1
0

Merge branch 'dev'

This commit is contained in:
Jeff 2025-01-09 10:41:17 -05:00
commit 0d39d91cc7
126 changed files with 10453 additions and 7361 deletions

2
.gitignore vendored
View File

@ -1 +1,3 @@
flamegraph.svg
perf.data*
target/ target/

541
Cargo.lock generated
View File

@ -1,6 +1,6 @@
# This file is automatically @generated by Cargo. # This file is automatically @generated by Cargo.
# It is not intended for manual editing. # It is not intended for manual editing.
version = 3 version = 4
[[package]] [[package]]
name = "aho-corasick" name = "aho-corasick"
@ -79,12 +79,35 @@ dependencies = [
"critical-section", "critical-section",
] ]
[[package]]
name = "atty"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8"
dependencies = [
"hermit-abi",
"libc",
"winapi",
]
[[package]] [[package]]
name = "autocfg" name = "autocfg"
version = "1.4.0" version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26" checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26"
[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
[[package]]
name = "bitflags"
version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de"
[[package]] [[package]]
name = "bumpalo" name = "bumpalo"
version = "3.16.0" version = "3.16.0"
@ -97,12 +120,29 @@ version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b" checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cast"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5"
[[package]] [[package]]
name = "cfg-if" name = "cfg-if"
version = "1.0.0" version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd" checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "clap"
version = "2.34.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0610544180c38b88101fecf2dd634b174a62eef6946f84dfc6a7127512b381c"
dependencies = [
"bitflags 1.3.2",
"textwrap",
"unicode-width",
]
[[package]] [[package]]
name = "clap" name = "clap"
version = "4.5.20" version = "4.5.20"
@ -123,6 +163,7 @@ dependencies = [
"anstyle", "anstyle",
"clap_lex", "clap_lex",
"strsim", "strsim",
"terminal_size",
] ]
[[package]] [[package]]
@ -149,6 +190,27 @@ version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "67ba02a97a2bd10f4b59b25c7973101c79642302776489e030cd13cdab09ed15" checksum = "67ba02a97a2bd10f4b59b25c7973101c79642302776489e030cd13cdab09ed15"
[[package]]
name = "color-print"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3aa954171903797d5623e047d9ab69d91b493657917bdfb8c2c80ecaf9cdb6f4"
dependencies = [
"color-print-proc-macro",
]
[[package]]
name = "color-print-proc-macro"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "692186b5ebe54007e45a59aea47ece9eb4108e141326c304cdc91699a7118a22"
dependencies = [
"nom",
"proc-macro2",
"quote",
"syn",
]
[[package]] [[package]]
name = "colorchoice" name = "colorchoice"
version = "1.0.3" version = "1.0.3"
@ -165,6 +227,42 @@ dependencies = [
"windows-sys 0.48.0", "windows-sys 0.48.0",
] ]
[[package]]
name = "criterion"
version = "0.3.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b01d6de93b2b6c65e17c634a26653a29d107b3c98c607c765bf38d041531cd8f"
dependencies = [
"atty",
"cast",
"clap 2.34.0",
"criterion-plot",
"csv",
"itertools",
"lazy_static",
"num-traits",
"oorandom",
"plotters",
"rayon",
"regex",
"serde",
"serde_cbor",
"serde_derive",
"serde_json",
"tinytemplate",
"walkdir",
]
[[package]]
name = "criterion-plot"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2673cc8207403546f45f5fd319a974b1e6983ad1a3ee7e6041650013be041876"
dependencies = [
"cast",
"itertools",
]
[[package]] [[package]]
name = "critical-section" name = "critical-section"
version = "1.2.0" version = "1.2.0"
@ -172,16 +270,62 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "790eea4361631c5e7d22598ecd5723ff611904e3344ce8720784c93e3d83d40b" checksum = "790eea4361631c5e7d22598ecd5723ff611904e3344ce8720784c93e3d83d40b"
[[package]] [[package]]
name = "dust-cli" name = "crossbeam-deque"
version = "0.1.0" version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
dependencies = [ dependencies = [
"clap", "crossbeam-epoch",
"colored", "crossbeam-utils",
]
[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-utils"
version = "0.8.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
[[package]]
name = "csv"
version = "1.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "acdc4883a9c96732e4733212c01447ebd805833b7275a73ca3ee080fd77afdaf"
dependencies = [
"csv-core",
"itoa",
"ryu",
"serde",
]
[[package]]
name = "csv-core"
version = "0.1.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5efa2b3d7902f4b634a20cae3c9c4e6209dc4779feb6863329607560143efa70"
dependencies = [
"memchr",
]
[[package]]
name = "dust-cli"
version = "0.5.0"
dependencies = [
"clap 4.5.20",
"color-print",
"dust-lang", "dust-lang",
"env_logger",
"log",
"postcard", "postcard",
"serde_json", "serde_json",
"tracing",
"tracing-subscriber",
] ]
[[package]] [[package]]
@ -190,35 +334,29 @@ version = "0.5.0"
dependencies = [ dependencies = [
"annotate-snippets", "annotate-snippets",
"colored", "colored",
"env_logger", "criterion",
"getrandom", "getrandom",
"log",
"rand", "rand",
"serde", "serde",
"serde_json", "serde_json",
"smartstring",
"tracing",
] ]
[[package]] [[package]]
name = "env_filter" name = "either"
version = "0.1.2" version = "1.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4f2c92ceda6ceec50f43169f9ee8424fe2db276791afde7b2cd8bc084cb376ab" checksum = "60b1af1c220855b6ceac025d3f6ecdd2b7c4894bfe9cd9bda4fbb4bc7c0d4cf0"
dependencies = [
"log",
"regex",
]
[[package]] [[package]]
name = "env_logger" name = "errno"
version = "0.11.5" version = "0.3.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e13fa619b91fb2381732789fc5de83b45675e882f66623b7d8cb4f643017018d" checksum = "33d852cb9b869c2a9b3df2f71a3074817f01e1844f839a144f5fcef059a4eb5d"
dependencies = [ dependencies = [
"anstream", "libc",
"anstyle", "windows-sys 0.59.0",
"env_filter",
"humantime",
"log",
] ]
[[package]] [[package]]
@ -234,6 +372,12 @@ dependencies = [
"wasm-bindgen", "wasm-bindgen",
] ]
[[package]]
name = "half"
version = "1.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1b43ede17f21864e81be2fa654110bf1e793774238d86ef8555c37e6519c0403"
[[package]] [[package]]
name = "hash32" name = "hash32"
version = "0.2.1" version = "0.2.1"
@ -264,10 +408,13 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea" checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]] [[package]]
name = "humantime" name = "hermit-abi"
version = "2.1.0" version = "0.1.19"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a3a5bfb195931eeb336b2a7b4d761daec841b97f947d34394601737a7bba5e4" checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
dependencies = [
"libc",
]
[[package]] [[package]]
name = "is_terminal_polyfill" name = "is_terminal_polyfill"
@ -275,6 +422,15 @@ version = "1.70.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf" checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
"either",
]
[[package]] [[package]]
name = "itoa" name = "itoa"
version = "1.0.11" version = "1.0.11"
@ -302,6 +458,12 @@ version = "0.2.161"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e9489c2807c139ffd9c1794f4af0ebe86a828db53ecdc7fea2111d0fed085d1" checksum = "8e9489c2807c139ffd9c1794f4af0ebe86a828db53ecdc7fea2111d0fed085d1"
[[package]]
name = "linux-raw-sys"
version = "0.4.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78b3ae25bc7c8c38cec158d1f2757ee79e9b3740fbc7ccf0e59e4b08d793fa89"
[[package]] [[package]]
name = "lock_api" name = "lock_api"
version = "0.4.12" version = "0.4.12"
@ -324,12 +486,93 @@ version = "2.7.4"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78ca9ab1a0babb1e7d5695e3530886289c18cf2f87ec19a575a0abdce112e3a3" checksum = "78ca9ab1a0babb1e7d5695e3530886289c18cf2f87ec19a575a0abdce112e3a3"
[[package]]
name = "minimal-lexical"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "68354c5c6bd36d73ff3feceb05efa59b6acb7626617f4962be322a825e61f79a"
[[package]]
name = "nom"
version = "7.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d273983c5a657a70a3e8f2a01329822f3b8c8172b73826411a55751e404a0a4a"
dependencies = [
"memchr",
"minimal-lexical",
]
[[package]]
name = "nu-ansi-term"
version = "0.46.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77a8165726e8236064dbb45459242600304b42a5ea24ee2948e18e023bf7ba84"
dependencies = [
"overload",
"winapi",
]
[[package]]
name = "num-traits"
version = "0.2.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
dependencies = [
"autocfg",
]
[[package]] [[package]]
name = "once_cell" name = "once_cell"
version = "1.20.2" version = "1.20.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1261fe7e33c73b354eab43b1273a57c8f967d0391e80353e51f764ac02cf6775" checksum = "1261fe7e33c73b354eab43b1273a57c8f967d0391e80353e51f764ac02cf6775"
[[package]]
name = "oorandom"
version = "11.1.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b410bbe7e14ab526a0e86877eb47c6996a2bd7746f027ba551028c925390e4e9"
[[package]]
name = "overload"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b15813163c1d831bf4a13c3610c05c0d03b39feb07f7e09fa234dac9b15aaf39"
[[package]]
name = "pin-project-lite"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "915a1e146535de9163f3987b8944ed8cf49a18bb0056bcebcdcece385cece4ff"
[[package]]
name = "plotters"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5aeb6f403d7a4911efb1e33402027fc44f29b5bf6def3effcc22d7bb75f2b747"
dependencies = [
"num-traits",
"plotters-backend",
"plotters-svg",
"wasm-bindgen",
"web-sys",
]
[[package]]
name = "plotters-backend"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df42e13c12958a16b3f7f4386b9ab1f3e7933914ecea48da7139435263a4172a"
[[package]]
name = "plotters-svg"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "51bae2ac328883f7acdfea3d66a7c35751187f870bc81f94563733a154d7a670"
dependencies = [
"plotters-backend",
]
[[package]] [[package]]
name = "postcard" name = "postcard"
version = "1.0.10" version = "1.0.10"
@ -398,6 +641,26 @@ dependencies = [
"getrandom", "getrandom",
] ]
[[package]]
name = "rayon"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b418a60154510ca1a002a752ca9714984e21e4241e804d32555251faf8b78ffa"
dependencies = [
"either",
"rayon-core",
]
[[package]]
name = "rayon-core"
version = "1.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1465873a3dfdaa8ae7cb14b4383657caab0b3e8a0aa9ae8e04b044854c8dfce2"
dependencies = [
"crossbeam-deque",
"crossbeam-utils",
]
[[package]] [[package]]
name = "regex" name = "regex"
version = "1.11.1" version = "1.11.1"
@ -436,12 +699,34 @@ dependencies = [
"semver", "semver",
] ]
[[package]]
name = "rustix"
version = "0.38.42"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f93dc38ecbab2eb790ff964bb77fa94faf256fd3e73285fd7ba0903b76bedb85"
dependencies = [
"bitflags 2.6.0",
"errno",
"libc",
"linux-raw-sys",
"windows-sys 0.59.0",
]
[[package]] [[package]]
name = "ryu" name = "ryu"
version = "1.0.18" version = "1.0.18"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f3cb5ba0dc43242ce17de99c180e96db90b235b8a9fdc9543c96d2209116bd9f" checksum = "f3cb5ba0dc43242ce17de99c180e96db90b235b8a9fdc9543c96d2209116bd9f"
[[package]]
name = "same-file"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93fc1dc3aaa9bfed95e02e6eadabb4baf7e3078b0bd1b4d7b6b0b68378900502"
dependencies = [
"winapi-util",
]
[[package]] [[package]]
name = "scopeguard" name = "scopeguard"
version = "1.2.0" version = "1.2.0"
@ -463,6 +748,16 @@ dependencies = [
"serde_derive", "serde_derive",
] ]
[[package]]
name = "serde_cbor"
version = "0.11.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2bef2ebfde456fb76bbcf9f59315333decc4fda0b2b44b420243c11e0f5ec1f5"
dependencies = [
"half",
"serde",
]
[[package]] [[package]]
name = "serde_derive" name = "serde_derive"
version = "1.0.214" version = "1.0.214"
@ -486,6 +781,33 @@ dependencies = [
"serde", "serde",
] ]
[[package]]
name = "sharded-slab"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f40ca3c46823713e0d4209592e8d6e826aa57e928f09752619fc696c499637f6"
dependencies = [
"lazy_static",
]
[[package]]
name = "smallvec"
version = "1.13.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c5e1a9a646d36c3599cd173a41282daf47c44583ad367b8e6837255952e5c67"
[[package]]
name = "smartstring"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb72c633efbaa2dd666986505016c32c3044395ceaf881518399d2f4127ee29"
dependencies = [
"autocfg",
"serde",
"static_assertions",
"version_check",
]
[[package]] [[package]]
name = "spin" name = "spin"
version = "0.9.8" version = "0.9.8"
@ -501,6 +823,12 @@ version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a8f112729512f8e442d81f95a8a7ddf2b7c6b8a1a6f509a95864142b30cab2d3" checksum = "a8f112729512f8e442d81f95a8a7ddf2b7c6b8a1a6f509a95864142b30cab2d3"
[[package]]
name = "static_assertions"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f"
[[package]] [[package]]
name = "strsim" name = "strsim"
version = "0.11.1" version = "0.11.1"
@ -518,6 +846,102 @@ dependencies = [
"unicode-ident", "unicode-ident",
] ]
[[package]]
name = "terminal_size"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5352447f921fda68cf61b4101566c0bdb5104eff6804d0678e5227580ab6a4e9"
dependencies = [
"rustix",
"windows-sys 0.59.0",
]
[[package]]
name = "textwrap"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060"
dependencies = [
"unicode-width",
]
[[package]]
name = "thread_local"
version = "1.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b9ef9bad013ada3808854ceac7b46812a6465ba368859a37e2100283d2d719c"
dependencies = [
"cfg-if",
"once_cell",
]
[[package]]
name = "tinytemplate"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4d6b5f19ff7664e8c98d03e2139cb510db9b0a60b55f8e8709b689d939b6bc"
dependencies = [
"serde",
"serde_json",
]
[[package]]
name = "tracing"
version = "0.1.41"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "784e0ac535deb450455cbfa28a6f0df145ea1bb7ae51b821cf5e7927fdcfbdd0"
dependencies = [
"pin-project-lite",
"tracing-attributes",
"tracing-core",
]
[[package]]
name = "tracing-attributes"
version = "0.1.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "395ae124c09f9e6918a2310af6038fba074bcf474ac352496d5910dd59a2226d"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "tracing-core"
version = "0.1.33"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e672c95779cf947c5311f83787af4fa8fffd12fb27e4993211a84bdfd9610f9c"
dependencies = [
"once_cell",
"valuable",
]
[[package]]
name = "tracing-log"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ee855f1f400bd0e5c02d150ae5de3840039a3f54b025156404e34c23c03f47c3"
dependencies = [
"log",
"once_cell",
"tracing-core",
]
[[package]]
name = "tracing-subscriber"
version = "0.3.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e8189decb5ac0fa7bc8b96b7cb9b2701d60d48805aca84a238004d665fcc4008"
dependencies = [
"nu-ansi-term",
"sharded-slab",
"smallvec",
"thread_local",
"tracing-core",
"tracing-log",
]
[[package]] [[package]]
name = "unicode-ident" name = "unicode-ident"
version = "1.0.13" version = "1.0.13"
@ -536,6 +960,28 @@ version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821" checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821"
[[package]]
name = "valuable"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "830b7e5d4d90034032940e4ace0d9a9a057e7a45cd94e6c007832e39edb82f6d"
[[package]]
name = "version_check"
version = "0.9.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b928f33d975fc6ad9f86c8f283853ad26bdd5b10b7f1542aa2fa15e2289105a"
[[package]]
name = "walkdir"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "29790946404f91d9c5d06f9874efddea1dc06c5efe94541a7d6863108e3a5e4b"
dependencies = [
"same-file",
"winapi-util",
]
[[package]] [[package]]
name = "wasi" name = "wasi"
version = "0.11.0+wasi-snapshot-preview1" version = "0.11.0+wasi-snapshot-preview1"
@ -597,6 +1043,47 @@ version = "0.2.95"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "65fc09f10666a9f147042251e0dda9c18f166ff7de300607007e96bdebc1068d" checksum = "65fc09f10666a9f147042251e0dda9c18f166ff7de300607007e96bdebc1068d"
[[package]]
name = "web-sys"
version = "0.3.72"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f6488b90108c040df0fe62fa815cbdee25124641df01814dd7282749234c6112"
dependencies = [
"js-sys",
"wasm-bindgen",
]
[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-util"
version = "0.1.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
dependencies = [
"windows-sys 0.59.0",
]
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
[[package]] [[package]]
name = "windows-sys" name = "windows-sys"
version = "0.48.0" version = "0.48.0"

View File

@ -5,12 +5,24 @@ resolver = "2"
[workspace.package] [workspace.package]
authors = ["Jeff Anderson"] authors = ["Jeff Anderson"]
edition = "2021" edition = "2024"
license = "MIT" license = "GPL-3.0"
readme = "README.md" readme = "README.md"
repository = "https://git.jeffa.io/jeff/dust.git" repository = "https://git.jeffa.io/jeff/dust.git"
version = "0.5.0"
[profile.dev] [profile.dev]
opt-level = 1 opt-level = 1
[profile.dev.package."*"] [profile.dev.package."*"]
opt-level = 3 opt-level = 3
[profile.release]
codegen-units = 1
lto = "fat"
opt-level = 3
panic = "abort"
strip = true
[profile.perf]
inherits = "release"
strip = false

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

384
README.md
View File

@ -1,13 +1,24 @@
# Dust # The Dust Programming Language
Dust is a high-level interpreted programming language with static types that focuses on ease of use, A **fast**, **safe** and **easy to use** language for general-purpose programming.
performance and correctness. The syntax, safety features and evaluation model are inspired by Rust.
The instruction set, optimization strategies and virtual machine are inspired by Lua. Unlike Rust
and other compiled languages, Dust has a very low time to execution. Simple programs compile in
under a millisecond on a modern processor. Unlike Lua and most other interpreted languages, Dust is
type-safe, with a simple yet powerful type system that enhances clarity and prevent bugs.
```dust Dust is **statically typed** to ensure that each program is valid before it is run. Compiling is
fast due to the purpose-built lexer and parser. Execution is fast because Dust uses a custom
bytecode that runs in a multi-threaded VM. Dust combines compile-time safety guarantees and
optimizations with negligible compile times and satisfying runtime speed to deliver a unique set of
features. It offers the best qualities of two disparate categories of programming language: the
highly optimized but slow-to-compile languages like Rust and C++ and the quick-to-start but often
slow and error-prone languages like Python and JavaScript.
Dust's syntax, safety features and evaluation model are based on Rust. Its instruction set,
optimization strategies and virtual machine are based on Lua. Unlike Rust and other languages that
compile to machine code, Dust has a very low time to execution. Unlike Lua and most other
interpreted languages, Dust enforces static typing to improve clarity and prevent bugs.
**Dust is under active development and is not yet ready for general use.**
```rust
// "Hello, world" using Dust's built-in I/O functions
write_line("Enter your name...") write_line("Enter your name...")
let name = read_line() let name = read_line()
@ -15,165 +26,219 @@ let name = read_line()
write_line("Hello " + name + "!") write_line("Hello " + name + "!")
``` ```
## Feature Progress ```rust
// The classic, unoptimized Fibonacci sequence
fn fib (n: int) -> int {
if n <= 0 { return 0 }
if n == 1 { return 1 }
Dust is still in development. This list may change as the language evolves. fib(n - 1) + fib(n - 2)
}
- [X] Lexer write_line(fib(25))
- [X] Compiler ```
- [X] VM
- [ ] Formatter
- [X] Disassembler (for chunk debugging)
- CLI
- [X] Run source
- [X] Compile to chunk and show disassembly
- [ ] Tokenize using the lexer and show token list
- [ ] Format using the formatter and display the output
- [ ] Compile to and run from intermediate formats
- [ ] JSON
- [ ] Postcard
- Basic Values
- [X] No `null` or `undefined` values
- [X] Booleans
- [X] Bytes (unsigned 8-bit)
- [X] Characters (Unicode scalar value)
- [X] Floats (64-bit)
- [X] Functions
- [X] Integers (signed 64-bit)
- [ ] Ranges
- [X] Strings (UTF-8)
- Composite Values
- [X] Concrete lists
- [X] Abstract lists (optimization)
- [ ] Concrete maps
- [ ] Abstract maps (optimization)
- [ ] Tuples (fixed-size constant lists)
- [ ] Structs
- [ ] Enums
- Types
- [X] Basic types for each kind of basic value
- [X] Generalized types: `num`, `any`, `none`
- [ ] `struct` types
- [ ] `enum` types
- [ ] Type aliases
- [ ] Type arguments
- [ ] Compile-time type checking
- [ ] Function returns
- [X] If/Else branches
- [ ] Instruction arguments
- Variables
- [X] Immutable by default
- [X] Block scope
- [X] Statically typed
- [X] Copy-free identifiers are stored in the chunk as string constants
- Functions
- [X] First-class value
- [X] Statically typed arguments and returns
- [X] Pure (no "closure" of local variables, arguments are the only input)
- [ ] Type arguments
- Control Flow
- [X] If/Else
- [ ] Loops
- [ ] `for`
- [ ] `loop`
- [X] `while`
- [ ] Match
## Implementation ## Goals
Dust is implemented in Rust and is divided into several parts, most importantly the lexer, compiler, This project's goal is to deliver a language with features that stand out due to a combination of
and virtual machine. All of Dust's components are designed with performance in mind and the codebase design choices and a high-quality implementation. As mentioned in the first sentence, Dust's general
uses as few dependencies as possible. The code is tested by integration tests that compile source aspirations are to be **fast**, **safe** and **easy**.
code and check the compiled chunk, then run the source and check the output of the virtual machine.
It is important to maintain a high level of quality by writing meaningful tests and preferring to
compile and run programs in an optimal way before adding new features.
### Lexer and Tokens - **Fast**
- **Fast Compilation** Despite its compile-time abstractions, Dust should compile and start
executing quickly. The compilation time should feel negligible to the user.
- **Fast Execution** Dust should be competitive with highly optimized, modern, register-based VM
languages like Lua. Dust should be bench tested during development to inform decisions about
performance.
- **Low Resource Usage** Memory and CPU power should be used conservatively and predictably.
- **Safe**
- **Static Types** Typing should prevent runtime errors and improve code quality, offering a
superior development experience despite some additional constraints. Like any good statically
typed language, users should feel confident in the type-consistency of their code and not want
to go back to a dynamically typed language.
- **Memory Safety** Dust should be free of memory bugs. Being implemented in Rust makes this easy
but, to accommodate long-running programs, Dust still requires a memory management strategy.
Dust's design is to use a separate thread for garbage collection, allowing the main thread to
continue executing code while the garbage collector looks for unused memory.
- **Easy**
- **Simple Syntax** Dust should be easier to learn than most programming languages. Its syntax
should be familiar to users of other C-like languages to the point that even a new user can read
Dust code and understand what it does. Rather than being held back by a lack of features, Dust
should be powerful and elegant in its simplicity, seeking a maximum of capability with a minimum
of complexity.
- **Excellent Errors** Dust should provide helpful error messages that guide the user to the
source of the problem and suggest a solution. Errors should be a helpful learning resource for
users rather than a source of frustration.
- **Relevant Documentation** Users should have the resources they need to learn Dust and write
code in it. They should know where to look for answers and how to reach out for help.
The lexer emits tokens from the source code. Dust makes extensive use of Rust's zero-copy ## Language Overview
capabilities to avoid unnecessary allocations when creating tokens. A token, depending on its type,
may contain a reference to some data from the source code. The data is only copied in the case of an
error. In a successfully executed program, no part of the source code is copied unless it is a
string literal or identifier.
### Compiler This is a quick overview of Dust's syntax features. It skips over the aspects that are familiar to
most programmers such as creating variables, using binary operators and printing to the console.
Eventually there should be a complete reference for the syntax.
The compiler creates a chunk, which contains all of the data needed by the virtual machine to run a ### Syntax and Evaluation
Dust program. It does so by emitting bytecode instructions, constants and locals while parsing the
tokens, which are generated one at a time by the lexer.
#### Parsing Dust belongs to the C-like family of languages[^5], with an imperative syntax that will be familiar
to many programmers. Dust code looks a lot like Ruby, JavaScript, TypeScript and other members of
the family but Rust is its primary point of reference for syntax. Rust was chosen as a syntax model
because its imperative code is *obvious by design* and *widely familiar*. Those qualities are
aligned with Dust's emphasis on usability.
Dust's compiler uses a custom Pratt parser, a kind of recursive descent parser, to translate a However, some differences exist. Dust *evaluates* all the code in the file while Rust only initiates
sequence of tokens into a chunk. Each token is given a precedence and may have a prefix and/or infix from a "main" function. Dust's execution model is more like one found in a scripting language. If we
parser. The parsers are just functions that modify the compiler and its output. For example, when put `42 + 42 == 84` into a file and run it, it will return `true` because the outer context is, in a
the compiler encounters a boolean token, its prefix parser is the `parse_boolean` function, which sense, the "main" function.
emits a `LoadBoolean` instruction. An integer token's prefix parser is `parse_integer`, which emits
a `LoadConstant` instruction and adds the integer to the constant list. Tokens with infix parsers
include the math operators, which emit `Add`, `Subtract`, `Multiply`, `Divide`, and `Modulo`
instructions.
Functions are compiled into their own chunks, which are stored in the constant list. A function's So while the syntax is by no means compatible, it is superficially similar, even to the point that
arguments are stored in the locals list. The VM must later bind the arguments to runtime values by syntax highlighting for Rust code works well with Dust code. This is not a design goal but a happy
assigning each argument a register and associating the register with the local. coincidence.
#### Optimizing ### Statements and Expressions
When generating instructions for a register-based virtual machine, there are opportunities to Dust is composed of statements and expressions. If a statement ends in an expression without a
optimize the generated code by using fewer instructions or fewer registers. While it is best to trailing semicolon, the statement evaluates to the value produced by that expression. However, if
output optimal code in the first place, it is not always possible. Dust's compiler uses simple the expression's value is suppressed with a semicolon, the statement does not evaluate to a value.
functions that modify isolated sections of the instruction list through a mutable reference. This is identical to Rust's evaluation model. That means that the following code will not compile:
#### Type Checking ```rust
// !!! Compile Error !!!
let a = { 40 + 2; }
```
Dust's compiler associates each emitted instruction with a type. This allows the compiler to enforce The `a` variable is assigned to the value produced by a block. The block contains an expression that
compatibility when values are used in expressions. For example, the compiler will not allow a string is suppressed by a semicolon, so the block does not evaluate to a value. Therefore, the `a` variable
to be added to an integer, but it will allow either to be added to another of the same type. Aside would have to be uninitialized (which Dust does not allow) or result in a runtime error (which Dust
from instruction arguments, the compiler also checks the types of function arguments and the blocks avoids at all costs). We can fix this code by moving the semicolon to the end of the block. In this
of `if`/`else` statements. position it suppresses the value of the entire `let` statement. As we saw above, a `let` statement
never evaluates to a value, so the semicolon has no effect on the program's behavior and could be
omitted altogether.
The compiler always checks types on the fly, so there is no need for a separate type-checking pass. ```rust
let a = { 40 + 2 }; // This is fine
let a = { 40 + 2 } // This is also fine
```
### Instructions Only the final expression in a block is returned. When a `let` statement is combined with an
`if/else` statement, the program can perform conditional side effects before assigning the variable.
Dust's virtual machine is register-based and uses 64-bit instructions, which encode nine pieces of ```rust
information: let random: int = random(0..100)
let is_even = if random == 99 {
write_line("We got a 99!")
Bit | Description false
----- | ----------- } else {
0-8 | The operation code. random % 2 == 0
9 | Boolean flag indicating whether the second argument is a constant }
10 | Boolean flag indicating whether the third argument is a constant
11 | Boolean flag indicating whether the first argument is a local
12 | Boolean flag indicating whether the second argument is a local
13 | Boolean flag indicating whether the third argument is a local
17-32 | First argument, usually the destination register or local where a value is stored
33-48 | Second argument, a register, local, constant or boolean flag
49-63 | Third argument, a register, local, constant or boolean flag
Because the instructions are 64 bits, the maximum number of registers is 2^16, which is more than is_even
enough, even for programs that are very large. This also means that chunks can store up to 2^16 ```
constants and locals.
### Virtual Machine If the above example were passed to Dust as a complete program, it would return a boolean value and
might print a message to the console (if the user is especially lucky). However, note that the
program could be modified to return no value by simply adding a semicolon at the end.
The virtual machine is simple and efficient. It uses a stack of registers, which can hold values or Compared to JavaScript, Dust's evaluation model is more predictable, less error-prone and will never
pointers. Pointers can point to values in the constant list, locals list, or the stack itself. If it trap the user into a frustating hunt for a missing semicolon. Compared to Rust, Dust's evaluation
points to a local, the VM must consult its local definitions to find which register hold's the model is more accomodating without sacrificing expressiveness. In Rust, semicolons are *required*
value. Those local defintions are stored as a simple list of register indexes. and *meaningful*, which provides excellent consistency but lacks flexibility. In JavaScript,
semicolons are *required* and *meaningless*, which is a source of confusion for many developers.
While the compiler has multiple responsibilities that warrant more complexity, the VM is simple Dust borrowed Rust's approach to semicolons and their effect on evaluation and relaxed the rules to
enough to use a very straightforward design. The VM's `run` function uses a simple `while` loop with accommodate different styles of coding. Rust isn't designed for command lines or REPLs but Dust is
a `match` statement to execute instructions. When it reaches a `Return` instruction, it breaks the well-suited to those applications. Dust needs to work in a source file or in an ad-hoc one-liner
loop and optionally returns a value. sent to the CLI. Thus, semicolons are optional in most cases.
There are two things you need to know about semicolons in Dust:
- Semicolons suppress the value of whatever they follow. The preceding statement or expression will
have the type `none` and will not evaluate to a value.
- If a semicolon does not change how the program runs, it is optional.
This example shows three statements with semicolons. The compiler knows that a `let` statement
cannot produce a value and will always have the type `none`. Thanks to static typing, it also knows
that the `write_line` function has no return value so the function call also has the type `none`.
Therefore, these semicolons are optional.
```rust
let a = 40;
let b = 2;
write_line("The answer is ", a + b);
```
Removing the semicolons does not alter the execution pattern or the return value.
```rust
let x = 10
let y = 3
write_line("The remainder is ", x % y)
```
### Type System
All variables have a type that is established when the variable is declared. This usually does not
require that the type be explicitly stated, Dust can infer the type from the value.
The next example produces a compiler error because the `if` block evaluates to and `int` but the
`else` block evaluates to a `str`. Dust does not allow branches of the same `if/else` statement to
have different types.
```rust
// !!! Compile Error !!!
let input = read_line()
let reward = if input == "42" {
write_line("You got it! Here's your reward.")
777 // <- This is an int
} else {
write_line(input, " is not the answer.")
"777" // <- This is a string
}
```
### Basic Values
Dust supports the following basic values:
- Boolean: `true` or `false`
- Byte: An unsigned 8-bit integer
- Character: A Unicode scalar value
- Float: A 64-bit floating-point number
- Function: An executable chunk of code
- Integer: A signed 64-bit integer
- String: A UTF-8 encoded byte sequence
Dust's "basic" values are conceptually similar because they are singular as opposed to composite.
Most of these values are stored on the stack but some are heap-allocated. A Dust string is a
sequence of bytes that are encoded in UTF-8. Even though it could be seen as a composite of byte
values, strings are considered "basic" because they are parsed directly from tokens and behave as
singular values. Shorter strings are stored on the stack while longer strings are heap-allocated.
Dust offers built-in native functions that can manipulate strings by accessing their bytes or
reading them as a sequence of characters.
There is no `null` or `undefined` value in Dust. All values and variables must be initialized to one
of the supported value types. This eliminates a whole class of bugs that permeate many other
languages.
> I call it my billion-dollar mistake. It was the invention of the null reference in 1965.
> - Tony Hoare
Dust *does* have a `none` type, which should not be confused for being `null`-like. Like the `()` or
"unit" type in Rust, `none` exists as a type but not as a value. It indicates the lack of a value
from a function, expression or statement. A variable cannot be assigned to `none`.
## Previous Implementations ## Previous Implementations
Dust has gone through several iterations, each with its own design choices. It was originally Dust has gone through several iterations, each with its own design choices. It was originally
implemented with a syntax tree generated by an external parser, then a parser generator, and finally implemented with a syntax tree generated by an external parser, then a parser generator, and finally
a custom parser. Eventually the language was rewritten to use bytecode instructions and a virtual a custom parser. Eventually the language was rewritten to use bytecode instructions and a virtual
machine. The current implementation is by far the most performant and the general design is unlikely machine. The current implementation: compiling to bytecode with custom lexing and parsing for a
to change. register-based VM, is by far the most performant and the general design is unlikely to change.
Dust previously had a more complex type system with type arguments (or "generics") and a simple Dust previously had a more complex type system with type arguments (or "generics") and a simple
model for asynchronous execution of statements. Both of these features were removed to simplify the model for asynchronous execution of statements. Both of these features were removed to simplify the
@ -182,19 +247,36 @@ reintroduced in the future.
## Inspiration ## Inspiration
[Crafting Interpreters] by Bob Nystrom was a major inspiration for rewriting Dust to use bytecode [Crafting Interpreters] by Bob Nystrom was a great resource for writing the compiler, especially the
instructions. It was also a great resource for writing the compiler, especially the Pratt parser. Pratt parser. The book is a great introduction to writing interpreters. Had it been discovered
sooner, some early implementations of Dust would have been both simpler in design and more ambitious
[A No-Frills Introduction to Lua 5.1 VM Instructions] by Kein-Hong Man was a great resource for the in scope.
design of Dust's instructions and operation codes. The Lua VM is simple and efficient, and Dust's VM
attempts to be the same, though it is not as optimized for different platforms. Dust's instructions
were originally 32-bit like Lua's, but were changed to 64-bit to allow for more complex information
about the instruction's arguments.
[The Implementation of Lua 5.0] by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar [The Implementation of Lua 5.0] by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes was a great resource for understanding how a compiler and VM tie together. Dust's compiler's Celes was a great resource for understanding register-based virtual machines and their instructions.
optimization functions are inspired by Lua optimizations covered in this paper. This paper was recommended by Bob Nystrom in [Crafting Interpreters].
[Crafting Interpreters]: https://craftinginterpreters.com/ [A No-Frills Introduction to Lua 5.1 VM Instructions] by Kein-Hong Man has a wealth of detailed
[The Implementation of Lua 5.0]: https://www.lua.org/doc/jucs05.pdf information on how Lua uses terse instructions to create dense chunks that execute quickly. This was
[A No-Frills Introduction to Lua 5.1 VM Instructions]: https://www.mcours.net/cours/pdf/hasclic3/hasssclic818.pdf essential in the design of Dust's instructions. Dust uses compile-time optimizations that are based
on Lua optimizations covered in this paper.
[A Performance Survey on Stack-based and Register-based Virtual Machines] by Ruijie Fang and Siqi
Liup was helpful for a quick yet efficient primer on getting stack-based and register-based virtual
machines up and running. The included code examples show how to implement both types of VMs in C.
The performance comparison between the two types of VMs is worth reading for anyone who is trying to
choose between the two. Some of the benchmarks described in the paper inspired similar benchmarks
used in this project to compare Dust to other languages.
## License
Dust is licensed under the GNU General Public License v3.0. See the `LICENSE` file for details.
## References
[^1]: [Crafting Interpreters](https://craftinginterpreters.com/)
[^2]: [The Implementation of Lua 5.0](https://www.lua.org/doc/jucs05.pdf)
[^3]: [A No-Frills Introduction to Lua 5.1 VM Instructions](https://www.mcours.net/cours/pdf/hasclic3/hasssclic818.pdf)
[^4]: [A Performance Survey on Stack-based and Register-based Virtual Machines](https://arxiv.org/abs/1611.00467)
[^5]: [List of C-family programming languages](https://en.wikipedia.org/wiki/List_of_C-family_programming_languages)
[^6]: [ripgrep is faster than {grep, ag, git grep, ucg, pt, sift}](https://blog.burntsushi.net/ripgrep/#mechanics)

View File

@ -0,0 +1,5 @@
let mut i = 0
while i < 5_000_000 {
i += 1
}

View File

@ -0,0 +1,10 @@
class AddictiveAddition {
public static void main(String[] args) {
int i = 0;
while (i < 5_000_000) {
i++;
}
}
}

View File

@ -0,0 +1,5 @@
var i = 0;
while (i < 5_000_000) {
i++;
}

View File

@ -0,0 +1,5 @@
local i = 1
while i < 5000000 do
i = i + 1
end

View File

@ -0,0 +1,4 @@
i = 1
while i < 5_000_000:
i += 1

View File

@ -0,0 +1,5 @@
i = 0
while i < 5_000_000
i += 1
end

View File

@ -0,0 +1,13 @@
hyperfine \
--shell none \
--prepare 'sync' \
--warmup 5 \
'../../target/release/dust addictive_addition.ds' \
'node addictive_addition.js' \
'deno addictive_addition.js' \
'bun addictive_addition.js' \
'python addictive_addition.py' \
'lua addictive_addition.lua' \
'ruby addictive_addition.rb' \
'java addictive_addition.java'

9
bench/fibonacci/run.sh Normal file
View File

@ -0,0 +1,9 @@
hyperfine \
--shell none \
--prepare 'sync' \
--warmup 5 \
'../../target/release/dust ../../examples/fibonacci.ds' \
'node fibonacci.js' \
'deno fibonacci.js' \
'bun fibonacci.js' \
'python fibonacci.py'

View File

@ -0,0 +1,9 @@
fn decrement(i: int) -> str {
if i == 0 {
return "Done!";
}
decrement(i - 1)
}
write_line(decrement(10_000))

View File

@ -0,0 +1,9 @@
function decrement(i) {
if (i == 0) {
return "Done!";
}
return decrement(i - 1);
}
console.log(decrement(10_000));

8
bench/recursion/run.sh Normal file
View File

@ -0,0 +1,8 @@
hyperfine \
--shell none \
--prepare 'sync' \
--warmup 5 \
'../../target/release/dust recursion.ds' \
'node recursion.js' \
'deno recursion.js' \
'bun recursion.js'

9
build.sh Normal file
View File

@ -0,0 +1,9 @@
RUSTFLAGS="\
-C collapse-macro-debuginfo=false \
-C default-linker-libraries=false \
-C embed-bitcode=true \
-C force-frame-pointers=true \
-C force-unwind-tables=false \
-C passes=mem2reg \
-C linker-plugin-lto"
cargo build --release --package dust-cli

View File

@ -1,22 +1,28 @@
[package] [package]
name = "dust-cli" name = "dust-cli"
description = "The Dust Programming Language CLI" description = "Command line interface for the Dust programming language"
version = "0.1.0"
authors = ["Jeff Anderson"] authors = ["Jeff Anderson"]
edition.workspace = true edition.workspace = true
license.workspace = true license.workspace = true
readme.workspace = true readme.workspace = true
repository.workspace = true repository.workspace = true
version.workspace = true
[[bin]] [[bin]]
name = "dust" name = "dust"
path = "src/main.rs" path = "src/main.rs"
[dependencies] [dependencies]
clap = { version = "4.5.14", features = ["derive"] } clap = { version = "4.5.14", features = [
colored = "2.1.0" "cargo",
"color",
"derive",
"help",
"wrap_help",
] }
color-print = "0.3.7"
dust-lang = { path = "../dust-lang" } dust-lang = { path = "../dust-lang" }
env_logger = "0.11.5"
log = "0.4.22"
postcard = "1.0.10" postcard = "1.0.10"
serde_json = "1.0.133" serde_json = "1.0.133"
tracing = "0.1.41"
tracing-subscriber = "0.3.19"

View File

@ -1,194 +1,389 @@
use std::io::{stdout, Write}; use std::{
use std::time::Instant; fs::read_to_string,
use std::{fs::read_to_string, path::PathBuf}; io::{self, stdout, Read},
path::PathBuf,
time::{Duration, Instant},
};
use clap::{Args, Parser, Subcommand}; use clap::{
use colored::Colorize; builder::{styling::AnsiColor, Styles},
use dust_lang::{compile, lex, run, write_token_list}; crate_authors, crate_description, crate_version,
use log::{Level, LevelFilter}; error::ErrorKind,
Args, ColorChoice, Error, Parser, Subcommand, ValueHint,
};
use color_print::{cformat, cstr};
use dust_lang::{CompileError, Compiler, DustError, DustString, Lexer, Span, Token, Vm};
use tracing::{subscriber::set_global_default, Level};
use tracing_subscriber::FmtSubscriber;
const ABOUT: &str = cstr!(
r#"
<bright-magenta,bold>Dust CLI
</>
{about}
<bold> Version:</> {version}
<bold>🦀 Author:</> {author}
<bold> License:</> GPL-3.0
<bold>🔬 Repository:</> https://git.jeffa.io/jeff/dust
"#
);
const PLAIN_ABOUT: &str = r#"
{about}
"#;
const USAGE: &str = cstr!(
r#"
<bright-magenta,bold>Usage:</> {usage}
"#
);
const SUBCOMMANDS: &str = cstr!(
r#"
<bright-magenta,bold>Modes:</>
{subcommands}
"#
);
const OPTIONS: &str = cstr!(
r#"
<bright-magenta,bold>Options:</>
{options}
"#
);
const CREATE_MAIN_HELP_TEMPLATE: fn() -> String =
|| cformat!("{ABOUT}{USAGE}{SUBCOMMANDS}{OPTIONS}");
const CREATE_MODE_HELP_TEMPLATE: fn(&str) -> String = |title| {
cformat!(
"\
<bright-magenta,bold>{title}\n</>\
{PLAIN_ABOUT}{USAGE}{OPTIONS}
"
)
};
const STYLES: Styles = Styles::styled()
.literal(AnsiColor::Cyan.on_default())
.placeholder(AnsiColor::Cyan.on_default())
.valid(AnsiColor::BrightCyan.on_default())
.invalid(AnsiColor::BrightYellow.on_default())
.error(AnsiColor::BrightRed.on_default());
#[derive(Parser)] #[derive(Parser)]
#[clap( #[clap(
version = env!("CARGO_PKG_VERSION"), version = crate_version!(),
author = env!("CARGO_PKG_AUTHORS"), author = crate_authors!(),
about = env!("CARGO_PKG_DESCRIPTION"), about = crate_description!(),
color = ColorChoice::Auto,
help_template = CREATE_MAIN_HELP_TEMPLATE(),
styles = STYLES,
)] )]
#[command(args_conflicts_with_subcommands = true)]
struct Cli { struct Cli {
#[command(flatten)] /// Overrides the DUST_LOG environment variable
global_arguments: GlobalArguments, #[arg(
short,
long,
value_parser = |input: &str| match input.to_uppercase().as_str() {
"TRACE" => Ok(Level::TRACE),
"DEBUG" => Ok(Level::DEBUG),
"INFO" => Ok(Level::INFO),
"WARN" => Ok(Level::WARN),
"ERROR" => Ok(Level::ERROR),
_ => Err(Error::new(ErrorKind::ValueValidation)),
}
)]
log_level: Option<Level>,
#[command(subcommand)] #[command(subcommand)]
mode: Option<CliMode>, mode: Option<Mode>,
#[command(flatten)]
run: Run,
} }
#[derive(Subcommand)] #[derive(Args)]
enum CliMode { struct Input {
/// Run the source code (default) /// Source code to run instead of a file
#[command(short_flag = 'r')] #[arg(short, long, value_hint = ValueHint::Other, value_name = "INPUT")]
Run {
#[command(flatten)]
global_arguments: GlobalArguments,
/// Do not print the program's output value
#[arg(short, long)]
no_output: bool,
},
/// Compile a chunk and show the disassembly
#[command(short_flag = 'd')]
Disassemble {
#[command(flatten)]
global_arguments: GlobalArguments,
/// Style the disassembly output
#[arg(short, long)]
style: bool,
},
/// Create and display tokens from the source code
#[command(short_flag = 't')]
Tokenize {
#[command(flatten)]
global_arguments: GlobalArguments,
/// Style the disassembly output
#[arg(short, long)]
style: bool,
},
}
#[derive(Args, Clone)]
struct GlobalArguments {
/// Log level, overrides the DUST_LOG environment variable
///
/// Possible values: trace, debug, info, warn, error
#[arg(short, long, value_name = "LOG_LEVEL")]
log: Option<LevelFilter>,
/// Source code
///
/// Conflicts with the file argument
#[arg(short, long, value_name = "SOURCE", conflicts_with = "file")]
command: Option<String>, command: Option<String>,
/// Read source code from stdin
#[arg(long)]
stdin: bool,
/// Path to a source code file /// Path to a source code file
#[arg(required_unless_present = "command")] #[arg(value_hint = ValueHint::FilePath)]
file: Option<PathBuf>, file: Option<PathBuf>,
} }
fn set_log_and_get_source(arguments: GlobalArguments, start_time: Instant) -> String { /// Compile and run the program (default)
let GlobalArguments { command, file, log } = arguments; #[derive(Args)]
let mut logger = env_logger::builder(); #[command(
short_flag = 'r',
help_template = CREATE_MODE_HELP_TEMPLATE("Run Mode")
)]
struct Run {
/// Print the time taken for compilation and execution
#[arg(long)]
time: bool,
logger.format(move |buf, record| { /// Do not print the program's return value
let elapsed = format!("T+{:.04}", start_time.elapsed().as_secs_f32()).dimmed(); #[arg(long)]
let level_display = match record.level() { no_output: bool,
Level::Info => "INFO".bold().white(),
Level::Debug => "DEBUG".bold().blue(),
Level::Warn => "WARN".bold().yellow(),
Level::Error => "ERROR".bold().red(),
Level::Trace => "TRACE".bold().purple(),
};
let display = format!("[{elapsed}] {level_display:5} {args}", args = record.args());
writeln!(buf, "{display}") /// Custom program name, overrides the file name
}); #[arg(long)]
name: Option<DustString>,
if let Some(level) = log { #[command(flatten)]
logger.filter_level(level).init(); input: Input,
} else { }
logger.parse_env("DUST_LOG").init();
#[derive(Subcommand)]
#[clap(subcommand_value_name = "MODE", flatten_help = true)]
enum Mode {
Run(Run),
/// Compile and print the bytecode disassembly
#[command(
short_flag = 'd',
help_template = CREATE_MODE_HELP_TEMPLATE("Disassemble Mode")
)]
Disassemble {
/// Style disassembly output
#[arg(short, long, default_value = "true")]
style: bool,
/// Custom program name, overrides the file name
#[arg(long)]
name: Option<DustString>,
#[command(flatten)]
input: Input,
},
/// Lex the source code and print the tokens
#[command(
short_flag = 't',
help_template = CREATE_MODE_HELP_TEMPLATE("Tokenize Mode")
)]
Tokenize {
/// Style token output
#[arg(short, long, default_value = "true")]
style: bool,
#[command(flatten)]
input: Input,
},
}
fn get_source_and_file_name(input: Input) -> (String, Option<DustString>) {
if let Some(path) = input.file {
let source = read_to_string(&path).expect("Failed to read source file");
let file_name = path
.file_name()
.and_then(|os_str| os_str.to_str())
.map(DustString::from);
return (source, file_name);
} }
if let Some(source) = command { if input.stdin {
source let mut source = String::new();
} else { io::stdin()
let path = file.expect("Path is required when command is not provided"); .read_to_string(&mut source)
.expect("Failed to read from stdin");
read_to_string(path).expect("Failed to read file") return (source, None);
} }
let source = input.command.expect("No source code provided");
(source, None)
} }
fn main() { fn main() {
let start_time = Instant::now(); let start_time = Instant::now();
let Cli { let Cli {
global_arguments, log_level,
mode, mode,
run,
} = Cli::parse(); } = Cli::parse();
let mode = mode.unwrap_or(CliMode::Run { let mode = mode.unwrap_or(Mode::Run(run));
global_arguments, let subscriber = FmtSubscriber::builder()
no_output: false, .with_max_level(log_level)
}); .with_thread_names(true)
.with_file(false)
.finish();
if let CliMode::Run { set_global_default(subscriber).expect("Failed to set tracing subscriber");
global_arguments,
no_output,
} = mode
{
let source = set_log_and_get_source(global_arguments, start_time);
let run_result = run(&source);
match run_result { if let Mode::Disassemble { style, name, input } = mode {
Ok(Some(value)) => { let (source, file_name) = get_source_and_file_name(input);
if !no_output { let lexer = Lexer::new(&source);
println!("{}", value) let program_name = name.or(file_name);
let mut compiler = match Compiler::new(lexer, program_name, true) {
Ok(compiler) => compiler,
Err(error) => {
handle_compile_error(error, &source);
return;
}
};
match compiler.compile() {
Ok(()) => {}
Err(error) => {
handle_compile_error(error, &source);
return;
}
}
let chunk = compiler.finish();
let mut stdout = stdout().lock();
chunk
.disassembler(&mut stdout)
.width(65)
.style(style)
.source(&source)
.disassemble()
.expect("Failed to write disassembly to stdout");
return;
}
if let Mode::Tokenize { input, .. } = mode {
let (source, _) = get_source_and_file_name(input);
let mut lexer = Lexer::new(&source);
let mut next_token = || -> Option<(Token, Span, bool)> {
match lexer.next_token() {
Ok((token, position)) => Some((token, position, lexer.is_eof())),
Err(error) => {
let report = DustError::compile(CompileError::Lex(error), &source).report();
eprintln!("{report}");
None
} }
} }
Ok(None) => {} };
Err(error) => {
eprintln!("{}", error.report()); println!("{:^66}", "Tokens");
for _ in 0..66 {
print!("-");
}
println!();
println!("{:^21}|{:^22}|{:^22}", "Kind", "Value", "Position");
for _ in 0..66 {
print!("-");
}
println!();
while let Some((token, position, is_eof)) = next_token() {
if is_eof {
break;
} }
let token_kind = token.kind().to_string();
let token = token.to_string();
let position = position.to_string();
println!("{token_kind:^21}|{token:^22}|{position:^22}");
} }
return; return;
} }
if let CliMode::Disassemble { if let Mode::Run(Run {
global_arguments, time,
style, no_output,
} = mode name,
input,
}) = mode
{ {
let source = set_log_and_get_source(global_arguments, start_time); let (source, file_name) = get_source_and_file_name(input);
let chunk = match compile(&source) { let lexer = Lexer::new(&source);
Ok(chunk) => chunk, let program_name = name.or(file_name);
let mut compiler = match Compiler::new(lexer, program_name, true) {
Ok(compiler) => compiler,
Err(error) => { Err(error) => {
eprintln!("{}", error.report()); handle_compile_error(error, &source);
return; return;
} }
}; };
let disassembly = chunk
.disassembler()
.style(style)
.source(&source)
.disassemble();
println!("{}", disassembly); match compiler.compile() {
Ok(()) => {}
return;
}
if let CliMode::Tokenize {
global_arguments,
style,
} = mode
{
let source = set_log_and_get_source(global_arguments, start_time);
let tokens = match lex(&source) {
Ok(tokens) => tokens,
Err(error) => { Err(error) => {
eprintln!("{}", error.report()); handle_compile_error(error, &source);
return; return;
} }
}; }
let mut stdout = stdout().lock();
write_token_list(&tokens, style, &mut stdout) let chunk = compiler.finish();
let compile_end = start_time.elapsed();
let vm = Vm::new(chunk);
let return_value = vm.run();
let run_end = start_time.elapsed();
if let Some(value) = return_value {
if !no_output {
println!("{}", value)
}
}
if time {
let run_time = run_end - compile_end;
let total_time = compile_end + run_time;
print_time("Compile Time", compile_end);
print_time("Run Time", run_time);
print_time("Total Time", total_time);
}
} }
} }
fn print_time(phase: &str, instant: Duration) {
let seconds = instant.as_secs_f64();
match seconds {
..=0.001 => {
println!(
"{phase:12}: {microseconds}µs",
microseconds = (seconds * 1_000_000.0).round()
);
}
..=0.199 => {
println!(
"{phase:12}: {milliseconds}ms",
milliseconds = (seconds * 1000.0).round()
);
}
_ => {
println!("{phase:12}: {seconds}s");
}
}
}
fn handle_compile_error(error: CompileError, source: &str) {
let dust_error = DustError::compile(error, source);
let report = dust_error.report();
eprintln!("{report}");
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use clap::CommandFactory; use clap::CommandFactory;

View File

@ -1,23 +1,110 @@
[package] [package]
name = "dust-lang" name = "dust-lang"
description = "Interpreter library for the Dust programming language" description = "Dust programming language library"
version = "0.5.0"
authors.workspace = true authors.workspace = true
edition.workspace = true edition.workspace = true
license.workspace = true license.workspace = true
readme.workspace = true readme.workspace = true
repository.workspace = true repository.workspace = true
version.workspace = true
[dependencies] [dependencies]
annotate-snippets = "0.11.4" annotate-snippets = "0.11.4"
colored = "2.1.0" colored = "2.1.0"
log = "0.4.22"
rand = "0.8.5" rand = "0.8.5"
serde = { version = "1.0.203", features = ["derive"] } serde = { version = "1.0.203", features = ["derive"] }
serde_json = "1.0.117" serde_json = "1.0.117"
getrandom = { version = "0.2", features = [ getrandom = { version = "0.2", features = [
"js", "js",
] } # Indirect dependency, for wasm builds ] } # Indirect dependency, for WASM builds
smartstring = { version = "1.0.1", features = [
"serde",
], default-features = false }
tracing = "0.1.41"
[dev-dependencies] [dev-dependencies]
env_logger = "0.11.5" criterion = { version = "0.3.4", features = ["html_reports"] }
[[bench]]
name = "addictive_addition"
harness = false
[[bench]]
name = "fibonacci"
harness = false
[[test]]
name = "logic_and"
path = "tests/logic/and.rs"
[[test]]
name = "logic_and_and"
path = "tests/logic/and_and.rs"
[[test]]
name = "logic_or"
path = "tests/logic/or.rs"
[[test]]
name = "logic_variables"
path = "tests/logic/variables.rs"
[[test]]
name = "math_add"
path = "tests/math/add.rs"
[[test]]
name = "math_add_assign"
path = "tests/math/add_assign.rs"
[[test]]
name = "math_add_errors"
path = "tests/math/add_errors.rs"
[[test]]
name = "math_divide"
path = "tests/math/divide.rs"
[[test]]
name = "math_divide_assign"
path = "tests/math/divide_assign.rs"
[[test]]
name = "math_divide_erros"
path = "tests/math/divide_errors.rs"
[[test]]
name = "math_modulo"
path = "tests/math/modulo.rs"
[[test]]
name = "math_modulo_assign"
path = "tests/math/modulo_assign.rs"
[[test]]
name = "math_modulo_errors"
path = "tests/math/modulo_errors.rs"
[[test]]
name = "math_multiply"
path = "tests/math/multiply.rs"
[[test]]
name = "math_multiply_assign"
path = "tests/math/multiply_assign.rs"
[[test]]
name = "math_multiply_errors"
path = "tests/math/multiply_errors.rs"
[[test]]
name = "math_subtract"
path = "tests/math/subtract.rs"
[[test]]
name = "math_subtract_assign"
path = "tests/math/subtract_assign.rs"
[[test]]
name = "math_subtract_errors"
path = "tests/math/subtract_errors.rs"

View File

@ -0,0 +1,29 @@
use std::time::Duration;
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use dust_lang::run;
const SOURCE: &str = r"
let mut i = 0
while i < 5_000_000 {
i += 1
}
";
fn addictive_addition(source: &str) {
run(source).unwrap();
}
fn criterion_benchmark(c: &mut Criterion) {
let mut group = c.benchmark_group("addictive_addition");
group.measurement_time(Duration::from_secs(15));
group.bench_function("addictive_addition", |b| {
b.iter(|| addictive_addition(black_box(SOURCE)))
});
group.finish();
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

View File

@ -0,0 +1,32 @@
use std::time::Duration;
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use dust_lang::run;
const SOURCE: &str = r"
fn fib (n: int) -> int {
if n <= 0 { return 0 }
if n == 1 { return 1 }
fib(n - 1) + fib(n - 2)
}
fib(25)
";
fn addictive_addition(source: &str) {
run(source).unwrap();
}
fn criterion_benchmark(c: &mut Criterion) {
let mut group = c.benchmark_group("fibonacci");
group.measurement_time(Duration::from_secs(15));
group.bench_function("fibonacci", |b| {
b.iter(|| addictive_addition(black_box(SOURCE)))
});
group.finish();
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

View File

@ -1,146 +0,0 @@
//! In-memory representation of a Dust program or function.
//!
//! A chunk consists of a sequence of instructions and their positions, a list of constants, and a
//! list of locals that can be executed by the Dust virtual machine. Chunks have a name when they
//! belong to a named function.
use std::fmt::{self, Debug, Display, Write};
use serde::{Deserialize, Serialize};
use crate::{ConcreteValue, Disassembler, FunctionType, Instruction, Scope, Span, Type};
/// In-memory representation of a Dust program or function.
///
/// See the [module-level documentation](index.html) for more information.
#[derive(Clone, PartialOrd, Serialize, Deserialize)]
pub struct Chunk {
name: Option<String>,
r#type: FunctionType,
instructions: Vec<(Instruction, Type, Span)>,
constants: Vec<ConcreteValue>,
locals: Vec<Local>,
}
impl Chunk {
pub fn new(name: Option<String>) -> Self {
Self {
name,
instructions: Vec::new(),
constants: Vec::new(),
locals: Vec::new(),
r#type: FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::None),
},
}
}
pub fn with_data(
name: Option<String>,
r#type: FunctionType,
instructions: Vec<(Instruction, Type, Span)>,
constants: Vec<ConcreteValue>,
locals: Vec<Local>,
) -> Self {
Self {
name,
r#type,
instructions,
constants,
locals,
}
}
pub fn name(&self) -> Option<&String> {
self.name.as_ref()
}
pub fn r#type(&self) -> &FunctionType {
&self.r#type
}
pub fn len(&self) -> usize {
self.instructions.len()
}
pub fn is_empty(&self) -> bool {
self.instructions.is_empty()
}
pub fn constants(&self) -> &Vec<ConcreteValue> {
&self.constants
}
pub fn instructions(&self) -> &Vec<(Instruction, Type, Span)> {
&self.instructions
}
pub fn locals(&self) -> &Vec<Local> {
&self.locals
}
pub fn disassembler(&self) -> Disassembler {
Disassembler::new(self)
}
}
impl Display for Chunk {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let disassembly = self.disassembler().style(true).disassemble();
write!(f, "{disassembly}")
}
}
impl Debug for Chunk {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let disassembly = self.disassembler().style(false).disassemble();
if cfg!(debug_assertions) {
f.write_char('\n')?;
}
write!(f, "{}", disassembly)
}
}
impl Eq for Chunk {}
impl PartialEq for Chunk {
fn eq(&self, other: &Self) -> bool {
self.instructions == other.instructions
&& self.constants == other.constants
&& self.locals == other.locals
}
}
/// A scoped variable.
#[derive(Debug, Clone, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Local {
/// The index of the identifier in the constants table.
pub identifier_index: u16,
/// The expected type of the local's value.
pub r#type: Type,
/// Whether the local is mutable.
pub is_mutable: bool,
/// Scope where the variable was declared.
pub scope: Scope,
}
impl Local {
/// Creates a new Local instance.
pub fn new(identifier_index: u16, r#type: Type, mutable: bool, scope: Scope) -> Self {
Self {
identifier_index,
r#type,
is_mutable: mutable,
scope,
}
}
}

View File

@ -0,0 +1,444 @@
//! Tool for disassembling chunks into a human-readable format.
//!
//! A disassembler can be created by calling [Chunk::disassembler][] or by instantiating one with
//! [Disassembler::new][].
//!
//! # Options
//!
//! The disassembler can be customized with the 'styled' option, which will apply ANSI color codes
//! to the output.
//!
//! If the 'source' option is set, the disassembler will include the source code in the output.
//!
//! # Output
//!
//! The disassembler will output a human-readable representation of the chunk by writing to any type
//! that implements the [Write][] trait.
//!
//! ```text
//! ╭─────────────────────────────────────────────────────────────────╮
//! │ dust │
//! │ │
//! │ write_line("Hello world!") │
//! │ │
//! │ 3 instructions, 1 constants, 0 locals, returns none │
//! │ │
//! │ Instructions │
//! │ ╭─────┬────────────┬─────────────────┬────────────────────────╮ │
//! │ │ i │ POSITION │ OPERATION │ INFO │ │
//! │ ├─────┼────────────┼─────────────────┼────────────────────────┤ │
//! │ │ 0 │ (11, 25) │ LOAD_CONSTANT │ R0 = C0 │ │
//! │ │ 1 │ (0, 26) │ CALL_NATIVE │ write_line(R0) │ │
//! │ │ 2 │ (26, 26) │ RETURN │ RETURN │ │
//! │ ╰─────┴────────────┴─────────────────┴────────────────────────╯ │
//! │ Constants │
//! │ ╭─────┬──────────────────────────┬──────────────────────────╮ │
//! │ │ i │ TYPE │ VALUE │ │
//! │ ├─────┼──────────────────────────┼──────────────────────────┤ │
//! │ │ 0 │ str │ Hello world! │ │
//! │ ╰─────┴──────────────────────────┴──────────────────────────╯ │
//! ╰─────────────────────────────────────────────────────────────────╯
//! ```
use std::io::{self, Write};
use colored::{ColoredString, Colorize};
use crate::{Chunk, Local};
const INSTRUCTION_COLUMNS: [(&str, usize); 4] =
[("i", 5), ("POSITION", 12), ("OPERATION", 17), ("INFO", 24)];
const INSTRUCTION_BORDERS: [&str; 3] = [
"╭─────┬────────────┬─────────────────┬────────────────────────╮",
"├─────┼────────────┼─────────────────┼────────────────────────┤",
"╰─────┴────────────┴─────────────────┴────────────────────────╯",
];
const LOCAL_COLUMNS: [(&str, usize); 5] = [
("i", 5),
("IDENTIFIER", 16),
("REGISTER", 10),
("SCOPE", 7),
("MUTABLE", 7),
];
const LOCAL_BORDERS: [&str; 3] = [
"╭─────┬────────────────┬──────────┬───────┬───────╮",
"├─────┼────────────────┼──────────┼───────┼───────┤",
"╰─────┴────────────────┴──────────┴───────┴───────╯",
];
const CONSTANT_COLUMNS: [(&str, usize); 3] = [("i", 5), ("TYPE", 26), ("VALUE", 26)];
const CONSTANT_BORDERS: [&str; 3] = [
"╭─────┬──────────────────────────┬──────────────────────────╮",
"├─────┼──────────────────────────┼──────────────────────────┤",
"╰─────┴──────────────────────────┴──────────────────────────╯",
];
const INDENTATION: &str = "";
const TOP_BORDER: [char; 3] = ['╭', '─', '╮'];
const LEFT_BORDER: char = '│';
const RIGHT_BORDER: char = '│';
const BOTTOM_BORDER: [char; 3] = ['╰', '─', '╯'];
/// Builder that constructs a human-readable representation of a chunk.
///
/// See the [module-level documentation](index.html) for more information.
pub struct Disassembler<'a, W> {
writer: &'a mut W,
chunk: &'a Chunk,
source: Option<&'a str>,
// Options
style: bool,
indent: usize,
width: usize,
show_type: bool,
}
impl<'a, W: Write> Disassembler<'a, W> {
pub fn new(chunk: &'a Chunk, writer: &'a mut W) -> Self {
Self {
writer,
chunk,
source: None,
style: false,
indent: 0,
width: Self::content_length(),
show_type: false,
}
}
pub fn source(mut self, source: &'a str) -> Self {
self.source = Some(source);
self
}
pub fn style(mut self, styled: bool) -> Self {
self.style = styled;
self
}
pub fn width(mut self, width: usize) -> Self {
self.width = width.max(Self::content_length());
self
}
pub fn show_type(mut self, show_type: bool) -> Self {
self.show_type = show_type;
self
}
fn indent(mut self, indent: usize) -> Self {
self.indent = indent;
self
}
fn content_length() -> usize {
let longest_line_length = INSTRUCTION_BORDERS[0].chars().count();
longest_line_length
}
fn line_length(&self) -> usize {
let indentation_length = INDENTATION.chars().count();
self.width + (indentation_length * self.indent) + 2 // Left and right border
}
fn write_char(&mut self, c: char) -> Result<(), io::Error> {
write!(&mut self.writer, "{}", c)
}
fn write_colored(&mut self, text: &ColoredString) -> Result<(), io::Error> {
write!(&mut self.writer, "{}", text)
}
fn write_str(&mut self, text: &str) -> Result<(), io::Error> {
write!(&mut self.writer, "{}", text)
}
fn write_content(
&mut self,
text: &str,
center: bool,
style_bold: bool,
style_dim: bool,
add_border: bool,
) -> Result<(), io::Error> {
let (line_content, overflow) = {
if text.len() > self.width {
let split_index = text
.char_indices()
.nth(self.width)
.map(|(index, _)| index)
.unwrap_or_else(|| text.len());
text.split_at(split_index)
} else {
(text, "")
}
};
let (left_pad_length, right_pad_length) = {
let width = self.line_length();
let line_content_length = line_content.chars().count();
let extra_space = width.saturating_sub(line_content_length);
let half = extra_space / 2;
let remainder = extra_space % 2;
if center {
(half, half + remainder)
} else {
(0, extra_space)
}
};
for _ in 0..self.indent {
self.write_str(INDENTATION)?;
}
if add_border {
self.write_char(LEFT_BORDER)?;
}
if center {
for _ in 0..left_pad_length {
self.write_char(' ')?;
}
}
if style_bold {
self.write_colored(&line_content.bold())?;
} else if style_dim {
self.write_colored(&line_content.dimmed())?;
} else {
self.write_str(line_content)?;
}
if center {
for _ in 0..right_pad_length {
self.write_char(' ')?;
}
}
if add_border {
self.write_char(RIGHT_BORDER)?;
}
self.write_char('\n')?;
if !overflow.is_empty() {
self.write_content(overflow, center, style_bold, style_dim, add_border)?;
}
Ok(())
}
fn write_center_border(&mut self, text: &str) -> Result<(), io::Error> {
self.write_content(text, true, false, false, true)
}
fn write_center_border_dim(&mut self, text: &str) -> Result<(), io::Error> {
self.write_content(text, true, false, self.style, true)
}
fn write_center_border_bold(&mut self, text: &str) -> Result<(), io::Error> {
self.write_content(text, true, self.style, false, true)
}
fn write_page_border(&mut self, border: [char; 3]) -> Result<(), io::Error> {
for _ in 0..self.indent {
self.write_str(INDENTATION)?;
}
self.write_char(border[0])?;
for _ in 0..self.line_length() {
self.write_char(border[1])?;
}
self.write_char(border[2])?;
self.write_char('\n')
}
fn write_instruction_section(&mut self) -> Result<(), io::Error> {
let mut column_name_line = String::new();
for (column_name, width) in INSTRUCTION_COLUMNS {
column_name_line.push_str(&format!("{column_name:^width$}", width = width));
}
column_name_line.push('│');
self.write_center_border_bold("Instructions")?;
self.write_center_border(INSTRUCTION_BORDERS[0])?;
self.write_center_border(&column_name_line)?;
self.write_center_border(INSTRUCTION_BORDERS[1])?;
for (index, instruction) in self.chunk.instructions.iter().enumerate() {
let position = self
.chunk
.positions
.get(index)
.map(|position| position.to_string())
.unwrap_or("stripped".to_string());
let operation = instruction.operation().to_string();
let info = instruction.disassembly_info();
let row = format!("{index:^5}{position:^12}{operation:^17}{info:^24}");
self.write_center_border(&row)?;
}
self.write_center_border(INSTRUCTION_BORDERS[2])?;
Ok(())
}
fn write_local_section(&mut self) -> Result<(), io::Error> {
let mut column_name_line = String::new();
for (column_name, width) in LOCAL_COLUMNS {
column_name_line.push_str(&format!("{:^width$}", column_name, width = width));
}
column_name_line.push('│');
self.write_center_border_bold("Locals")?;
self.write_center_border(LOCAL_BORDERS[0])?;
self.write_center_border(&column_name_line)?;
self.write_center_border(LOCAL_BORDERS[1])?;
for (
index,
Local {
identifier_index,
register_index,
scope,
is_mutable,
},
) in self.chunk.locals.iter().enumerate()
{
let identifier_display = self
.chunk
.constants
.get(*identifier_index as usize)
.map(|value| value.to_string())
.unwrap_or_else(|| "unknown".to_string());
let register_display = format!("R{register_index}");
let scope = scope.to_string();
let row = format!(
"│{index:^5}│{identifier_display:^16}│{register_display:^10}│{scope:^7}│{is_mutable:^7}│"
);
self.write_center_border(&row)?;
}
self.write_center_border(LOCAL_BORDERS[2])?;
Ok(())
}
fn write_constant_section(&mut self) -> Result<(), io::Error> {
let mut column_name_line = String::new();
for (column_name, width) in CONSTANT_COLUMNS {
column_name_line.push_str(&format!("{:^width$}", column_name, width = width));
}
column_name_line.push('│');
self.write_center_border_bold("Constants")?;
self.write_center_border(CONSTANT_BORDERS[0])?;
self.write_center_border(&column_name_line)?;
self.write_center_border(CONSTANT_BORDERS[1])?;
for (index, value) in self.chunk.constants.iter().enumerate() {
let type_display = value.r#type().to_string();
let value_display = {
let mut value_string = value.to_string();
if value_string.len() > 26 {
value_string = format!("{value_string:.23}...");
}
value_string
};
let constant_display = format!("{index:^5}{type_display:^26}{value_display:^26}");
self.write_center_border(&constant_display)?;
}
self.write_center_border(CONSTANT_BORDERS[2])?;
Ok(())
}
pub fn write_prototype_section(&mut self) -> Result<(), io::Error> {
self.write_center_border_bold("Functions")?;
for chunk in &self.chunk.prototypes {
chunk
.disassembler(self.writer)
.indent(self.indent + 1)
.width(self.width)
.style(true)
.show_type(true)
.disassemble()?;
self.write_center_border("")?;
}
Ok(())
}
pub fn disassemble(&mut self) -> Result<(), io::Error> {
self.write_page_border(TOP_BORDER)?;
if let Some(name) = &self.chunk.name {
self.write_center_border_bold(name)?;
}
if self.show_type {
let type_display = self.chunk.r#type.to_string();
self.write_center_border(&type_display)?;
}
if let Some(source) = self.source {
let lazily_formatted = source.split_whitespace().collect::<Vec<&str>>().join(" ");
self.write_center_border("")?;
self.write_center_border(&lazily_formatted)?;
self.write_center_border("")?;
}
let info_line = format!(
"{} instructions, {} constants, {} locals, returns {}",
self.chunk.instructions.len(),
self.chunk.constants.len(),
self.chunk.locals.len(),
self.chunk.r#type.return_type
);
self.write_center_border_dim(&info_line)?;
self.write_center_border("")?;
if !self.chunk.instructions.is_empty() {
self.write_instruction_section()?;
}
if !self.chunk.locals.is_empty() {
self.write_local_section()?;
}
if !self.chunk.constants.is_empty() {
self.write_constant_section()?;
}
if !self.chunk.prototypes.is_empty() {
self.write_prototype_section()?;
}
self.write_page_border(BOTTOM_BORDER)
}
}

View File

@ -0,0 +1,31 @@
use serde::{Deserialize, Serialize};
use crate::Scope;
/// A scoped variable.
#[derive(Debug, Clone, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Local {
/// The index of the identifier in the constants table.
pub identifier_index: u8,
/// Stack index where the local's value is stored.
pub register_index: u8,
/// Whether the local is mutable.
pub is_mutable: bool,
/// Scope where the variable was declared.
pub scope: Scope,
}
impl Local {
/// Creates a new Local instance.
pub fn new(identifier_index: u8, register_index: u8, is_mutable: bool, scope: Scope) -> Self {
Self {
identifier_index,
register_index,
is_mutable,
scope,
}
}
}

131
dust-lang/src/chunk/mod.rs Normal file
View File

@ -0,0 +1,131 @@
//! Representation of a Dust program or function.
//!
//! A chunk is output by the compiler to represent all the information needed to execute a Dust
//! program. In addition to the program itself, each function in the source is compiled into its own
//! chunk and stored in the `prototypes` field of its parent. Thus, a chunk can also represent a
//! function prototype.
//!
//! Chunks have a name when they belong to a named function. They also have a type, so the input
//! parameters and the type of the return value are statically known. The [`Chunk::stack_size`]
//! field can provide the necessary stack size that will be needed by the virtual machine. Chunks
//! cannot be instantiated directly and must be created by the compiler. However, when the Rust
//! compiler is in the "test" or "debug_assertions" configuration (used for all types of test),
//! [`Chunk::with_data`] can be used to create a chunk for comparison to the compiler output. Do not
//! try to run these chunks in a virtual machine. Due to their missing stack size and record index,
//! they will cause a panic or undefined behavior.
mod disassembler;
mod local;
mod scope;
pub use disassembler::Disassembler;
pub use local::Local;
pub use scope::Scope;
use std::fmt::{self, Debug, Display, Formatter, Write as FmtWrite};
use std::io::Write;
use serde::{Deserialize, Serialize};
use crate::{DustString, Function, FunctionType, Instruction, Span, Value};
/// Representation of a Dust program or function.
///
/// See the [module-level documentation](index.html) for more information.
#[derive(Clone, PartialOrd, Serialize, Deserialize)]
pub struct Chunk {
pub(crate) name: Option<DustString>,
pub(crate) r#type: FunctionType,
pub(crate) instructions: Vec<Instruction>,
pub(crate) positions: Vec<Span>,
pub(crate) constants: Vec<Value>,
pub(crate) locals: Vec<Local>,
pub(crate) prototypes: Vec<Chunk>,
pub(crate) register_count: usize,
pub(crate) prototype_index: u8,
}
impl Chunk {
#[cfg(any(test, debug_assertions))]
pub fn with_data(
name: Option<DustString>,
r#type: FunctionType,
instructions: impl Into<Vec<Instruction>>,
positions: impl Into<Vec<Span>>,
constants: impl Into<Vec<Value>>,
locals: impl Into<Vec<Local>>,
prototypes: Vec<Chunk>,
) -> Self {
Self {
name,
r#type,
instructions: instructions.into(),
positions: positions.into(),
constants: constants.into(),
locals: locals.into(),
prototypes,
register_count: 0,
prototype_index: 0,
}
}
pub fn as_function(&self) -> Function {
Function {
name: self.name.clone(),
r#type: self.r#type.clone(),
prototype_index: self.prototype_index,
}
}
pub fn disassembler<'a, W: Write>(&'a self, writer: &'a mut W) -> Disassembler<'a, W> {
Disassembler::new(self, writer)
}
}
impl Display for Chunk {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let mut output = Vec::new();
self.disassembler(&mut output)
.style(true)
.disassemble()
.unwrap();
let string = String::from_utf8_lossy(&output);
write!(f, "{string}")
}
}
impl Debug for Chunk {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut output = Vec::new();
self.disassembler(&mut output)
.style(true)
.disassemble()
.unwrap();
let string = String::from_utf8_lossy(&output);
if cfg!(debug_assertions) {
f.write_char('\n')?; // Improves readability in Cargo test output
}
write!(f, "{string}")
}
}
impl Eq for Chunk {}
impl PartialEq for Chunk {
fn eq(&self, other: &Self) -> bool {
self.name == other.name
&& self.r#type == other.r#type
&& self.instructions == other.instructions
&& self.constants == other.constants
&& self.locals == other.locals
&& self.prototypes == other.prototypes
}
}

View File

@ -47,6 +47,6 @@ impl Scope {
impl Display for Scope { impl Display for Scope {
fn fmt(&self, f: &mut Formatter) -> fmt::Result { fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "({}, {})", self.depth, self.block_index) write!(f, "{}.{}", self.depth, self.block_index)
} }
} }

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,267 @@
use std::num::{ParseFloatError, ParseIntError};
use crate::{AnnotatedError, LexError, Scope, Span, TokenKind, TokenOwned, Type, TypeConflict};
/// Compilation errors
#[derive(Clone, Debug, PartialEq)]
pub enum CompileError {
// Token errors
ExpectedToken {
expected: TokenKind,
found: TokenOwned,
position: Span,
},
ExpectedTokenMultiple {
expected: &'static [TokenKind],
found: TokenOwned,
position: Span,
},
// Parsing errors
ComparisonChain {
position: Span,
},
ExpectedBoolean {
found: TokenOwned,
position: Span,
},
ExpectedExpression {
found: TokenOwned,
position: Span,
},
ExpectedFunction {
found: TokenOwned,
actual_type: Type,
position: Span,
},
ExpectedFunctionType {
found: Type,
position: Span,
},
InvalidAssignmentTarget {
found: TokenOwned,
position: Span,
},
UnexpectedReturn {
position: Span,
},
// Variable errors
CannotMutateImmutableVariable {
identifier: String,
position: Span,
},
ExpectedMutableVariable {
found: TokenOwned,
position: Span,
},
UndeclaredVariable {
identifier: String,
position: Span,
},
VariableOutOfScope {
identifier: String,
variable_scope: Scope,
access_scope: Scope,
position: Span,
},
// Type errors
CannotAddType {
argument_type: Type,
position: Span,
},
CannotAddArguments {
left_type: Type,
left_position: Span,
right_type: Type,
right_position: Span,
},
CannotDivideType {
argument_type: Type,
position: Span,
},
CannotDivideArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotModuloType {
argument_type: Type,
position: Span,
},
CannotModuloArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotMultiplyType {
argument_type: Type,
position: Span,
},
CannotMultiplyArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotSubtractType {
argument_type: Type,
position: Span,
},
CannotSubtractArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotResolveRegisterType {
register_index: usize,
position: Span,
},
CannotResolveVariableType {
identifier: String,
position: Span,
},
IfElseBranchMismatch {
conflict: TypeConflict,
position: Span,
},
IfMissingElse {
position: Span,
},
ListItemTypeConflict {
conflict: TypeConflict,
position: Span,
},
ReturnTypeConflict {
conflict: TypeConflict,
position: Span,
},
// Chunk errors
ConstantIndexOutOfBounds {
index: usize,
position: Span,
},
InstructionIndexOutOfBounds {
index: usize,
position: Span,
},
LocalIndexOutOfBounds {
index: usize,
position: Span,
},
// Wrappers around foreign errors
Lex(LexError),
ParseFloatError {
error: ParseFloatError,
position: Span,
},
ParseIntError {
error: ParseIntError,
position: Span,
},
}
impl CompileError {}
impl AnnotatedError for CompileError {
fn title() -> &'static str {
"Compilation Error"
}
fn description(&self) -> &'static str {
match self {
Self::CannotAddArguments { .. } => "Cannot add these types",
Self::CannotAddType { .. } => "Cannot add to this type",
Self::ComparisonChain { .. } => "Cannot chain comparison operations",
Self::CannotDivideArguments { .. } => "Cannot divide these types",
Self::CannotDivideType { .. } => "Cannot divide this type",
Self::CannotModuloArguments { .. } => "Cannot modulo these types",
Self::CannotModuloType { .. } => "Cannot modulo this type",
Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable",
Self::CannotMultiplyArguments { .. } => "Cannot multiply these types",
Self::CannotMultiplyType { .. } => "Cannot multiply this type",
Self::CannotResolveRegisterType { .. } => "Cannot resolve register type",
Self::CannotResolveVariableType { .. } => "Cannot resolve type",
Self::CannotSubtractType { .. } => "Cannot subtract from this type",
Self::CannotSubtractArguments { .. } => "Cannot subtract these types",
Self::ConstantIndexOutOfBounds { .. } => "Constant index out of bounds",
Self::ExpectedBoolean { .. } => "Expected a boolean",
Self::ExpectedExpression { .. } => "Expected an expression",
Self::ExpectedFunction { .. } => "Expected a function",
Self::ExpectedFunctionType { .. } => "Expected a function type",
Self::ExpectedMutableVariable { .. } => "Expected a mutable variable",
Self::ExpectedToken { .. } => "Expected a specific token",
Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens",
Self::IfElseBranchMismatch { .. } => "Type mismatch in if/else branches",
Self::IfMissingElse { .. } => "If statement missing else branch",
Self::InstructionIndexOutOfBounds { .. } => "Instruction index out of bounds",
Self::InvalidAssignmentTarget { .. } => "Invalid assignment target",
Self::Lex(error) => error.description(),
Self::ListItemTypeConflict { .. } => "List item type conflict",
Self::LocalIndexOutOfBounds { .. } => "Local index out of bounds",
Self::ParseFloatError { .. } => "Failed to parse float",
Self::ParseIntError { .. } => "Failed to parse integer",
Self::ReturnTypeConflict { .. } => "Return type conflict",
Self::UndeclaredVariable { .. } => "Undeclared variable",
Self::UnexpectedReturn { .. } => "Unexpected return",
Self::VariableOutOfScope { .. } => "Variable out of scope",
}
}
fn detail_snippets(&self) -> Vec<(String, Span)> {
match self {
Self::CannotAddArguments {
left_type,
left_position,
right_type,
right_position,
} => {
vec![
(
format!("A value of type \"{left_type}\" was used here."),
*left_position,
),
(
format!("A value of type \"{right_type}\" was used here."),
*right_position,
),
]
}
Self::ReturnTypeConflict { conflict, position } => {
vec![(
format!(
"Expected type {} but found type {}",
conflict.expected, conflict.actual
),
*position,
)]
}
_ => Vec::with_capacity(0),
}
}
fn help_snippets(&self) -> Vec<(String, Span)> {
match self {
Self::CannotAddArguments {
left_type,
left_position,
right_type,
right_position,
} => {
vec![(
format!("Type \"{left_type}\" cannot be added to type \"{right_type}\". Try converting one of the values to the other type."),
Span(left_position.0, right_position.1)
)]
}
_ => Vec::with_capacity(0),
}
}
}
impl From<LexError> for CompileError {
fn from(error: LexError) -> Self {
Self::Lex(error)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,64 @@
//! Functions used by the compiler to optimize a chunk's bytecode during compilation.
use tracing::debug;
use crate::{Compiler, Instruction, Operation};
/// Optimizes a control flow pattern to use fewer registers and avoid using a `POINT` instruction.
/// Use this after parsing an if/else statement.
///
/// This makes the following examples compile to the same bytecode:
///
/// ```dust
/// 4 == 4
/// ```
///
/// ```dust
/// if 4 == 4 { true } else { false }
/// ```
///
/// When they occur in the sequence shown below, instructions can be optimized by taking advantage
/// of the loaders' ability to skip an instruction after loading a value. If these instructions are
/// the result of a binary expression, this will not change anything because they were already
/// emitted optimally. Control flow patterns, however, can be optimized because the load
/// instructions are from seperate expressions that each uses its own register. Since only one of
/// the two branches will be executed, this is wasteful. It would also require the compiler to emit
/// a `POINT` instruction to prevent the VM from encountering an empty register.
///
/// The instructions must be in the following order:
/// - `EQUAL` | `LESS` | `LESS_EQUAL` | `TEST`
/// - `JUMP`
/// - `LOAD_BOOLEAN` or `LOAD_CONSTANT`
/// - `LOAD_BOOLEAN` or `LOAD_CONSTANT`
///
/// This optimization was taken from `A No-Frills Introduction to Lua 5.1 VM Instructions` by
/// Kein-Hong Man.
pub fn control_flow_register_consolidation(compiler: &mut Compiler) {
if !matches!(
compiler.get_last_operations(),
Some([
Operation::EQUAL | Operation::LESS | Operation::LESS_EQUAL | Operation::TEST,
Operation::JUMP,
Operation::LOAD_BOOLEAN | Operation::LOAD_CONSTANT,
Operation::LOAD_BOOLEAN | Operation::LOAD_CONSTANT,
])
) {
return;
}
debug!("Consolidating registers for control flow optimization");
let first_loader_index = compiler.instructions.len() - 2;
let (first_loader, _, _) = &mut compiler.instructions.get_mut(first_loader_index).unwrap();
let first_loader_destination = first_loader.a_field();
*first_loader =
Instruction::load_boolean(first_loader.a_field(), first_loader.b_field() != 0, true);
let second_loader_index = compiler.instructions.len() - 1;
let (second_loader, _, _) = &mut compiler.instructions.get_mut(second_loader_index).unwrap();
*second_loader = Instruction::load_boolean(
first_loader_destination,
second_loader.b_field() != 0,
false,
);
}

View File

@ -0,0 +1,320 @@
use std::fmt::{self, Display, Formatter};
use crate::Token;
use super::{CompileError, Compiler};
pub type Parser<'a> = fn(&mut Compiler<'a>) -> Result<(), CompileError>;
/// Rule that defines how to parse a token.
#[derive(Debug, Clone, Copy)]
pub struct ParseRule<'a> {
pub prefix: Option<Parser<'a>>,
pub infix: Option<Parser<'a>>,
pub precedence: Precedence,
}
impl From<&Token<'_>> for ParseRule<'_> {
fn from(token: &Token) -> Self {
match token {
Token::ArrowThin => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Async => todo!(),
Token::Bang => ParseRule {
prefix: Some(Compiler::parse_unary),
infix: None,
precedence: Precedence::Unary,
},
Token::BangEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::Bool => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Boolean(_) => ParseRule {
prefix: Some(Compiler::parse_boolean),
infix: None,
precedence: Precedence::None,
},
Token::Break => todo!(),
Token::Byte(_) => ParseRule {
prefix: Some(Compiler::parse_byte),
infix: None,
precedence: Precedence::None,
},
Token::Character(_) => ParseRule {
prefix: Some(Compiler::parse_character),
infix: None,
precedence: Precedence::None,
},
Token::Colon => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Comma => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::Dot => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::DoubleAmpersand => ParseRule {
prefix: None,
infix: Some(Compiler::parse_logical_binary),
precedence: Precedence::LogicalAnd,
},
Token::DoubleEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::DoublePipe => ParseRule {
prefix: None,
infix: Some(Compiler::parse_logical_binary),
precedence: Precedence::LogicalOr,
},
Token::DoubleDot => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Eof => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::Equal => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::Assignment,
},
Token::Else => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::Float(_) => ParseRule {
prefix: Some(Compiler::parse_float),
infix: None,
precedence: Precedence::None,
},
Token::FloatKeyword => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Fn => ParseRule {
prefix: Some(Compiler::parse_function),
infix: None,
precedence: Precedence::None,
},
Token::Greater => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::GreaterEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::Identifier(_) => ParseRule {
prefix: Some(Compiler::parse_variable),
infix: None,
precedence: Precedence::None,
},
Token::If => ParseRule {
prefix: Some(Compiler::parse_if),
infix: None,
precedence: Precedence::None,
},
Token::Int => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::Integer(_) => ParseRule {
prefix: Some(Compiler::parse_integer),
infix: None,
precedence: Precedence::None,
},
Token::LeftBrace => ParseRule {
prefix: Some(Compiler::parse_block),
infix: None,
precedence: Precedence::None,
},
Token::LeftParenthesis => ParseRule {
prefix: Some(Compiler::parse_grouped),
infix: Some(Compiler::parse_call),
precedence: Precedence::Call,
},
Token::LeftBracket => ParseRule {
prefix: Some(Compiler::parse_list),
infix: None,
precedence: Precedence::None,
},
Token::Less => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::LessEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_comparison_binary),
precedence: Precedence::Comparison,
},
Token::Let => ParseRule {
prefix: Some(Compiler::parse_let_statement),
infix: None,
precedence: Precedence::Assignment,
},
Token::Loop => todo!(),
Token::Map => todo!(),
Token::Minus => ParseRule {
prefix: Some(Compiler::parse_unary),
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Term,
},
Token::MinusEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Assignment,
},
Token::Mut => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::Percent => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Factor,
},
Token::PercentEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Assignment,
},
Token::Plus => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Term,
},
Token::PlusEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Assignment,
},
Token::Return => ParseRule {
prefix: Some(Compiler::parse_return_statement),
infix: None,
precedence: Precedence::None,
},
Token::RightBrace => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::RightParenthesis => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::RightBracket => ParseRule {
prefix: None,
infix: None,
precedence: Precedence::None,
},
Token::Semicolon => ParseRule {
prefix: Some(Compiler::parse_semicolon),
infix: None,
precedence: Precedence::None,
},
Token::Slash => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Factor,
},
Token::SlashEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Assignment,
},
Token::Star => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Factor,
},
Token::StarEqual => ParseRule {
prefix: None,
infix: Some(Compiler::parse_math_binary),
precedence: Precedence::Assignment,
},
Token::Str => ParseRule {
prefix: Some(Compiler::expect_expression),
infix: None,
precedence: Precedence::None,
},
Token::String(_) => ParseRule {
prefix: Some(Compiler::parse_string),
infix: None,
precedence: Precedence::None,
},
Token::Struct => todo!(),
Token::While => ParseRule {
prefix: Some(Compiler::parse_while),
infix: None,
precedence: Precedence::None,
},
}
}
}
/// Operator precedence levels.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Precedence {
Primary = 9,
Call = 8,
Unary = 7,
Factor = 6,
Term = 5,
Comparison = 4,
LogicalAnd = 3,
LogicalOr = 2,
Assignment = 1,
None = 0,
}
impl Precedence {
pub fn increment(&self) -> Self {
match self {
Precedence::None => Precedence::Assignment,
Precedence::Assignment => Precedence::LogicalOr,
Precedence::LogicalOr => Precedence::LogicalAnd,
Precedence::LogicalAnd => Precedence::Comparison,
Precedence::Comparison => Precedence::Term,
Precedence::Term => Precedence::Factor,
Precedence::Factor => Precedence::Unary,
Precedence::Unary => Precedence::Call,
Precedence::Call => Precedence::Primary,
Precedence::Primary => Precedence::Primary,
}
}
}
impl Display for Precedence {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
}

View File

@ -0,0 +1,200 @@
use crate::{Span, Token, Type};
use super::CompileError;
pub fn check_math_type(
r#type: &Type,
operator: Token,
position: &Span,
) -> Result<(), CompileError> {
match operator {
Token::Plus => expect_addable_type(r#type, position),
Token::Minus => expect_subtractable_type(r#type, position),
Token::Star => expect_multipliable_type(r#type, position),
Token::Slash => expect_dividable_type(r#type, position),
Token::Percent => expect_modulable_type(r#type, position),
_ => Ok(()),
}
}
pub fn check_math_types(
left: &Type,
left_position: &Span,
operator: Token,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
match operator {
Token::Plus => expect_addable_types(left, left_position, right, right_position),
Token::Minus => expect_subtractable_types(left, left_position, right, right_position),
Token::Star => expect_multipliable_types(left, left_position, right, right_position),
Token::Slash => expect_dividable_types(left, left_position, right, right_position),
Token::Percent => expect_modulable_types(left, left_position, right, right_position),
_ => Ok(()),
}
}
pub fn expect_addable_type(argument_type: &Type, position: &Span) -> Result<(), CompileError> {
if matches!(
argument_type,
Type::Byte | Type::Character | Type::Float | Type::Integer | Type::String
) {
Ok(())
} else {
Err(CompileError::CannotAddType {
argument_type: argument_type.clone(),
position: *position,
})
}
}
pub fn expect_addable_types(
left: &Type,
left_position: &Span,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
if matches!(
(left, right),
(Type::Byte, Type::Byte)
| (Type::Character, Type::String)
| (Type::Character, Type::Character)
| (Type::Float, Type::Float)
| (Type::Integer, Type::Integer)
| (Type::String, Type::Character)
| (Type::String, Type::String),
) {
Ok(())
} else {
Err(CompileError::CannotAddArguments {
left_type: left.clone(),
left_position: *left_position,
right_type: right.clone(),
right_position: *right_position,
})
}
}
pub fn expect_dividable_type(argument_type: &Type, position: &Span) -> Result<(), CompileError> {
if matches!(argument_type, Type::Byte | Type::Float | Type::Integer) {
Ok(())
} else {
Err(CompileError::CannotDivideType {
argument_type: argument_type.clone(),
position: *position,
})
}
}
pub fn expect_dividable_types(
left: &Type,
left_position: &Span,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
if matches!(
(left, right),
(Type::Byte, Type::Byte) | (Type::Float, Type::Float) | (Type::Integer, Type::Integer)
) {
Ok(())
} else {
Err(CompileError::CannotDivideArguments {
left_type: left.clone(),
right_type: right.clone(),
position: Span(left_position.0, right_position.1),
})
}
}
pub fn expect_modulable_type(argument_type: &Type, position: &Span) -> Result<(), CompileError> {
if matches!(argument_type, Type::Byte | Type::Integer | Type::Float) {
Ok(())
} else {
Err(CompileError::CannotModuloType {
argument_type: argument_type.clone(),
position: *position,
})
}
}
pub fn expect_modulable_types(
left: &Type,
left_position: &Span,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
if matches!(
(left, right),
(Type::Byte, Type::Byte) | (Type::Integer, Type::Integer) | (Type::Float, Type::Float)
) {
Ok(())
} else {
Err(CompileError::CannotModuloArguments {
left_type: left.clone(),
right_type: right.clone(),
position: Span(left_position.0, right_position.1),
})
}
}
pub fn expect_multipliable_type(argument_type: &Type, position: &Span) -> Result<(), CompileError> {
if matches!(argument_type, Type::Byte | Type::Float | Type::Integer) {
Ok(())
} else {
Err(CompileError::CannotMultiplyType {
argument_type: argument_type.clone(),
position: *position,
})
}
}
pub fn expect_multipliable_types(
left: &Type,
left_position: &Span,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
if matches!(
(left, right),
(Type::Byte, Type::Byte) | (Type::Float, Type::Float) | (Type::Integer, Type::Integer)
) {
Ok(())
} else {
Err(CompileError::CannotMultiplyArguments {
left_type: left.clone(),
right_type: right.clone(),
position: Span(left_position.0, right_position.1),
})
}
}
pub fn expect_subtractable_type(argument_type: &Type, position: &Span) -> Result<(), CompileError> {
if matches!(argument_type, Type::Byte | Type::Float | Type::Integer) {
Ok(())
} else {
Err(CompileError::CannotSubtractType {
argument_type: argument_type.clone(),
position: *position,
})
}
}
pub fn expect_subtractable_types(
left: &Type,
left_position: &Span,
right: &Type,
right_position: &Span,
) -> Result<(), CompileError> {
if matches!(
(left, right),
(Type::Byte, Type::Byte) | (Type::Float, Type::Float) | (Type::Integer, Type::Integer)
) {
Ok(())
} else {
Err(CompileError::CannotSubtractArguments {
left_type: left.clone(),
right_type: right.clone(),
position: Span(left_position.0, right_position.1),
})
}
}

View File

@ -1,360 +0,0 @@
//! Tool for disassembling chunks into a human-readable format.
//!
//! A disassembler can be created by calling [Chunk::disassembler][] or by instantiating one with
//! [Disassembler::new][].
//!
//! # Options
//!
//! The disassembler can be customized with the 'styled' option, which will apply ANSI color codes
//! to the output.
//!
//! If the 'source' option is set, the disassembler will include the source code in the output.
//!
//! # Output
//!
//! The output of [Disassembler::disassemble] is a string that can be printed to the console or
//! written to a file. Below is an example of the disassembly for a simple "Hello, world!" program.
//!
//! ```text
//! ┌──────────────────────────────────────────────────────────────────────────────┐
//! │ dust │
//! │ │
//! │ write_line("hello_world") │
//! │ │
//! │ 3 instructions, 1 constants, 0 locals, returns none │
//! │ │
//! │ Instructions │
//! │ ------------ │
//! │ i POSITION OPERATION TYPE INFO │
//! │ --- ---------- ------------- -------------- -------------------------------- │
//! │ 0 (11, 24) LOAD_CONSTANT str R0 = C0 │
//! │ 1 (0, 25) CALL_NATIVE none write_line(R0..R1) │
//! │ 2 (25, 25) RETURN none │
//! │┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈│
//! │ Constants │
//! │ --------- │
//! │ i TYPE VALUE │
//! │ --- ---------------- ----------------- │
//! │ 0 str hello_world │
//! └──────────────────────────────────────────────────────────────────────────────┘
//! ```
use std::env::current_exe;
use colored::Colorize;
use crate::{value::ConcreteValue, Chunk, Local};
const INSTRUCTION_HEADER: [&str; 4] = [
"Instructions",
"------------",
" i POSITION OPERATION TYPE INFO ",
"--- ---------- ------------- -------------- --------------------------------",
];
const CONSTANT_HEADER: [&str; 4] = [
"Constants",
"---------",
" i TYPE VALUE ",
"--- ---------------- -----------------",
];
const LOCAL_HEADER: [&str; 4] = [
"Locals",
"------",
" i SCOPE MUTABLE TYPE IDENTIFIER ",
"--- ------- ------- -------------------------------- ----------------",
];
/// Builder that constructs a human-readable representation of a chunk.
///
/// See the [module-level documentation](index.html) for more information.
pub struct Disassembler<'a> {
output: String,
chunk: &'a Chunk,
source: Option<&'a str>,
// Options
style: bool,
indent: usize,
}
impl<'a> Disassembler<'a> {
pub fn new(chunk: &'a Chunk) -> Self {
Self {
output: String::new(),
chunk,
source: None,
style: false,
indent: 0,
}
}
/// The default width of the disassembly output, including borders.
pub fn default_width() -> usize {
let longest_line = INSTRUCTION_HEADER[3];
(longest_line.chars().count() + 2).max(80)
}
pub fn source(mut self, source: &'a str) -> Self {
self.source = Some(source);
self
}
pub fn style(mut self, styled: bool) -> Self {
self.style = styled;
self
}
fn push(
&mut self,
text: &str,
center: bool,
style_bold: bool,
style_dim: bool,
add_border: bool,
) {
let width = Disassembler::default_width();
let characters = text.chars().collect::<Vec<char>>();
let content_width = if add_border { width - 2 } else { width };
let (line_characters, remainder) = characters
.split_at_checked(content_width)
.unwrap_or((characters.as_slice(), &[]));
let (left_pad_length, right_pad_length) = {
let extra_space = content_width.saturating_sub(characters.len());
if center {
(extra_space / 2, extra_space / 2 + extra_space % 2)
} else {
(0, extra_space)
}
};
let mut content = line_characters.iter().collect::<String>();
if style_bold {
content = content.bold().to_string();
}
if style_dim {
content = content.dimmed().to_string();
}
let length_before_content = self.output.chars().count();
for _ in 0..self.indent {
self.output.push_str("");
}
if add_border {
self.output.push('│');
}
self.output.push_str(&" ".repeat(left_pad_length));
self.output.push_str(&content);
self.output.push_str(&" ".repeat(right_pad_length));
let length_after_content = self.output.chars().count();
let line_length = length_after_content - length_before_content;
if line_length < content_width - 1 {
self.output
.push_str(&" ".repeat(content_width - line_length));
}
if add_border {
self.output.push('│');
}
self.output.push('\n');
if !remainder.is_empty() {
self.push(
remainder.iter().collect::<String>().as_str(),
center,
style_bold,
style_dim,
add_border,
);
}
}
fn push_source(&mut self, source: &str) {
self.push(source, true, false, false, true);
}
fn push_chunk_info(&mut self, info: &str) {
self.push(info, true, false, true, true);
}
fn push_header(&mut self, header: &str) {
self.push(header, true, self.style, false, true);
}
fn push_details(&mut self, details: &str) {
self.push(details, true, false, false, true);
}
fn push_border(&mut self, border: &str) {
self.push(border, false, false, false, false);
}
fn push_empty(&mut self) {
self.push("", false, false, false, true);
}
fn push_instruction_section(&mut self) {
for line in INSTRUCTION_HEADER {
self.push_header(line);
}
for (index, (instruction, r#type, position)) in self.chunk.instructions().iter().enumerate()
{
let position = position.to_string();
let operation = instruction.operation().to_string();
let type_display = {
let mut type_string = r#type.to_string();
if type_string.len() > 14 {
type_string = format!("{type_string:.11}...");
}
type_string
};
let info = instruction.disassembly_info();
let instruction_display =
format!("{index:^3} {position:^10} {operation:13} {type_display:^14} {info:^32}");
self.push_details(&instruction_display);
}
}
fn push_local_section(&mut self) {
for line in LOCAL_HEADER {
self.push_header(line);
}
for (
index,
Local {
identifier_index,
r#type,
scope,
is_mutable,
},
) in self.chunk.locals().iter().enumerate()
{
let identifier_display = self
.chunk
.constants()
.get(*identifier_index as usize)
.map(|value| value.to_string())
.unwrap_or_else(|| "unknown".to_string());
let type_display = r#type.to_string();
let scope = scope.to_string();
let local_display = format!(
"{index:^3} {scope:^7} {is_mutable:^7} {type_display:^32} {identifier_display:^16}"
);
self.push_details(&local_display);
}
}
fn push_constant_section(&mut self) {
for line in CONSTANT_HEADER {
self.push_header(line);
}
for (index, value) in self.chunk.constants().iter().enumerate() {
if let ConcreteValue::Function(chunk) = value {
let mut function_disassembler = chunk.disassembler().style(self.style);
function_disassembler.indent = self.indent + 1;
let function_disassembly = function_disassembler.disassemble();
self.output.push_str(&function_disassembly);
continue;
}
let type_display = value.r#type().to_string();
let value_display = {
let mut value_string = value.to_string();
if value_string.len() > 15 {
value_string = format!("{value_string:.12}...");
}
value_string
};
let constant_display = format!("{index:^3} {type_display:^16} {value_display:^17}");
self.push_details(&constant_display);
}
}
pub fn disassemble(mut self) -> String {
let width = Disassembler::default_width();
let top_border = "".to_string() + &"".repeat(width - 2) + "";
let section_border = "".to_string() + &"".repeat(width - 2) + "";
let bottom_border = "".to_string() + &"".repeat(width - 2) + "";
let name_display = self
.chunk
.name()
.map(|identifier| identifier.to_string())
.unwrap_or_else(|| {
current_exe()
.map(|path| {
let path_string = path.to_string_lossy();
let file_name = path_string
.split('/')
.last()
.map(|slice| slice.to_string())
.unwrap_or(path_string.to_string());
file_name
})
.unwrap_or("Chunk Disassembly".to_string())
});
self.push_border(&top_border);
self.push_header(&name_display);
if let Some(source) = self.source {
self.push_empty();
self.push_source(&source.split_whitespace().collect::<Vec<&str>>().join(" "));
self.push_empty();
}
let info_line = format!(
"{} instructions, {} constants, {} locals, returns {}",
self.chunk.len(),
self.chunk.constants().len(),
self.chunk.locals().len(),
self.chunk.r#type().return_type
);
self.push_chunk_info(&info_line);
self.push_empty();
if !self.chunk.is_empty() {
self.push_instruction_section();
}
if !self.chunk.locals().is_empty() {
self.push_border(&section_border);
self.push_local_section();
}
if !self.chunk.constants().is_empty() {
self.push_border(&section_border);
self.push_constant_section();
}
self.push_border(&bottom_border);
self.output.to_string()
}
}

View File

@ -1,66 +1,80 @@
//! Top-level Dust errors with source code annotations. //! Top-level error for the Dust language API that can create detailed reports with source code
//! annotations.
use std::fmt::{self, Display, Formatter};
use annotate_snippets::{Level, Renderer, Snippet}; use annotate_snippets::{Level, Renderer, Snippet};
use crate::{vm::VmError, CompileError, Span}; use crate::{CompileError, NativeFunctionError, Span};
/// A top-level error that can occur during the execution of Dust code. /// A top-level error that can occur during the interpretation of Dust code.
///
/// This error can display nicely formatted messages with source code annotations.
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
pub enum DustError<'src> { pub enum DustError<'src> {
Compile { Compile {
error: CompileError, error: CompileError,
source: &'src str, source: &'src str,
}, },
Runtime { NativeFunction {
error: VmError, error: NativeFunctionError,
source: &'src str, source: &'src str,
}, },
} }
impl<'src> DustError<'src> { impl<'src> DustError<'src> {
pub fn compile(error: CompileError, source: &'src str) -> Self {
DustError::Compile { error, source }
}
pub fn report(&self) -> String { pub fn report(&self) -> String {
let (title, description, detail_snippets, help_snippets) = match self {
Self::Compile { error, .. } => (
CompileError::title(),
error.description(),
error.detail_snippets(),
error.help_snippets(),
),
Self::NativeFunction { error, .. } => (
NativeFunctionError::title(),
error.description(),
error.detail_snippets(),
error.help_snippets(),
),
};
let label = format!("{}: {}", title, description);
let message = Level::Error
.title(&label)
.snippets(detail_snippets.iter().map(|(details, position)| {
Snippet::source(self.source())
.annotation(Level::Info.span(position.0..position.1).label(details))
}))
.snippets(help_snippets.iter().map(|(help, position)| {
Snippet::source(self.source())
.annotation(Level::Help.span(position.0..position.1).label(help))
}));
let mut report = String::new(); let mut report = String::new();
let renderer = Renderer::styled(); let renderer = Renderer::styled();
match self { report.push_str(&renderer.render(message).to_string());
DustError::Runtime { error, source } => {
let position = error.position();
let label = format!("{}: {}", VmError::title(), error.description());
let details = error
.details()
.unwrap_or_else(|| "While running this code".to_string());
let message = Level::Error.title(&label).snippet(
Snippet::source(source)
.fold(false)
.annotation(Level::Error.span(position.0..position.1).label(&details)),
);
report.push_str(&renderer.render(message).to_string());
}
DustError::Compile { error, source } => {
let position = error.position();
let label = format!("{}: {}", CompileError::title(), error.description());
let details = error
.details()
.unwrap_or_else(|| "While parsing this code".to_string());
let message = Level::Error.title(&label).snippet(
Snippet::source(source)
.fold(false)
.annotation(Level::Error.span(position.0..position.1).label(&details)),
);
report.push_str(&renderer.render(message).to_string());
}
}
report report
} }
fn source(&self) -> &str {
match self {
Self::Compile { source, .. } => source,
Self::NativeFunction { source, .. } => source,
}
}
}
impl Display for DustError<'_> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.report())
}
} }
pub trait AnnotatedError { pub trait AnnotatedError {
fn title() -> &'static str; fn title() -> &'static str;
fn description(&self) -> &'static str; fn description(&self) -> &'static str;
fn details(&self) -> Option<String>; fn detail_snippets(&self) -> Vec<(String, Span)>;
fn position(&self) -> Span; fn help_snippets(&self) -> Vec<(String, Span)>;
} }

View File

@ -1,18 +1,14 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Add { pub struct Add {
pub destination: Destination, pub destination: u8,
pub left: Argument, pub left: Argument,
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Add { impl From<Instruction> for Add {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Add { Add {
@ -25,19 +21,11 @@ impl From<&Instruction> for Add {
impl From<Add> for Instruction { impl From<Add> for Instruction {
fn from(add: Add) -> Self { fn from(add: Add) -> Self {
let (a, a_is_local) = match add.destination { let operation = Operation::ADD;
Destination::Local(local) => (local, true), let a = add.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = add.left.as_index_and_constant_flag();
}; let (c, c_is_constant) = add.right.as_index_and_constant_flag();
*Instruction::new(Operation::Add) Instruction::new(operation, a, b, c, b_is_constant, c_is_constant, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(add.left.index())
.set_b_is_constant(add.left.is_constant())
.set_b_is_local(add.left.is_local())
.set_c(add.right.index())
.set_c_is_constant(add.right.is_constant())
.set_c_is_local(add.right.is_local())
} }
} }

View File

@ -1,40 +1,35 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct Call { pub struct Call {
pub destination: Destination, pub destination: u8,
pub function: Argument, pub function_register: u8,
pub argument_count: u16, pub argument_count: u8,
pub is_recursive: bool,
} }
impl From<&Instruction> for Call { impl From<Instruction> for Call {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let function_register = instruction.b_field();
} else { let argument_count = instruction.c_field();
Destination::Register(instruction.a()) let is_recursive = instruction.d_field();
};
Call { Call {
destination, destination,
function: instruction.b_as_argument(), function_register,
argument_count: instruction.c(), argument_count,
is_recursive,
} }
} }
} }
impl From<Call> for Instruction { impl From<Call> for Instruction {
fn from(call: Call) -> Self { fn from(call: Call) -> Self {
let (a, a_is_local) = match call.destination { let a = call.destination;
Destination::Local(local) => (local, true), let b = call.function_register;
Destination::Register(register) => (register, false), let c = call.argument_count;
}; let d = call.is_recursive;
*Instruction::new(Operation::Call) Instruction::new(Operation::CALL, a, b, c, false, false, d)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(call.function.index())
.set_b_is_constant(call.function.is_constant())
.set_b_is_local(call.function.is_local())
.set_c(call.argument_count)
} }
} }

View File

@ -1,38 +1,31 @@
use crate::{Destination, Instruction, NativeFunction, Operation}; use crate::{Instruction, NativeFunction, Operation};
pub struct CallNative { pub struct CallNative {
pub destination: Destination, pub destination: u8,
pub function: NativeFunction, pub function: NativeFunction,
pub argument_count: u16, pub argument_count: u8,
} }
impl From<&Instruction> for CallNative { impl From<Instruction> for CallNative {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let function = NativeFunction::from(instruction.b_field());
} else {
Destination::Register(instruction.a())
};
CallNative { CallNative {
destination, destination,
function: NativeFunction::from(instruction.b()), function,
argument_count: instruction.c(), argument_count: instruction.c_field(),
} }
} }
} }
impl From<CallNative> for Instruction { impl From<CallNative> for Instruction {
fn from(call_native: CallNative) -> Self { fn from(call_native: CallNative) -> Self {
let (a, a_is_local) = match call_native.destination { let operation = Operation::CALL_NATIVE;
Destination::Local(local) => (local, true), let a = call_native.destination;
Destination::Register(register) => (register, false), let b = call_native.function as u8;
}; let c = call_native.argument_count;
*Instruction::new(Operation::CallNative) Instruction::new(operation, a, b, c, false, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(call_native.function as u16)
.set_c(call_native.argument_count)
} }
} }

View File

@ -1,23 +1,24 @@
use crate::{Instruction, Operation}; use crate::{Instruction, Operation};
pub struct Close { pub struct Close {
pub from: u16, pub from: u8,
pub to: u16, pub to: u8,
} }
impl From<&Instruction> for Close { impl From<Instruction> for Close {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
Close { Close {
from: instruction.b(), from: instruction.b_field(),
to: instruction.c(), to: instruction.c_field(),
} }
} }
} }
impl From<Close> for Instruction { impl From<Close> for Instruction {
fn from(r#move: Close) -> Self { fn from(close: Close) -> Self {
*Instruction::new(Operation::Close) let operation = Operation::CLOSE;
.set_b(r#move.from) let (a, b, c) = (0, close.from, close.to);
.set_c(r#move.to)
Instruction::new(operation, a, b, c, false, false, false)
} }
} }

View File

@ -1,26 +0,0 @@
use crate::{Instruction, Operation};
pub struct DefineLocal {
pub register: u16,
pub local_index: u16,
pub is_mutable: bool,
}
impl From<&Instruction> for DefineLocal {
fn from(instruction: &Instruction) -> Self {
DefineLocal {
register: instruction.a(),
local_index: instruction.b(),
is_mutable: instruction.c_as_boolean(),
}
}
}
impl From<DefineLocal> for Instruction {
fn from(define_local: DefineLocal) -> Self {
*Instruction::new(Operation::DefineLocal)
.set_a(define_local.register)
.set_b(define_local.local_index)
.set_c_to_boolean(define_local.is_mutable)
}
}

View File

@ -1,18 +1,14 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Divide { pub struct Divide {
pub destination: Destination, pub destination: u8,
pub left: Argument, pub left: Argument,
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Divide { impl From<Instruction> for Divide {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Divide { Divide {
@ -25,19 +21,11 @@ impl From<&Instruction> for Divide {
impl From<Divide> for Instruction { impl From<Divide> for Instruction {
fn from(divide: Divide) -> Self { fn from(divide: Divide) -> Self {
let (a, a_is_local) = match divide.destination { let operation = Operation::DIVIDE;
Destination::Local(local) => (local, true), let a = divide.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = divide.left.as_index_and_constant_flag();
}; let (c, c_is_constant) = divide.right.as_index_and_constant_flag();
*Instruction::new(Operation::Divide) Instruction::new(operation, a, b, c, b_is_constant, c_is_constant, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(divide.left.index())
.set_b_is_constant(divide.left.is_constant())
.set_b_is_local(divide.left.is_local())
.set_c(divide.right.index())
.set_c_is_constant(divide.right.is_constant())
.set_c_is_local(divide.right.is_local())
} }
} }

View File

@ -6,27 +6,22 @@ pub struct Equal {
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Equal { impl From<Instruction> for Equal {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let value = instruction.d_field();
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Equal { Equal { value, left, right }
value: instruction.a_as_boolean(),
left,
right,
}
} }
} }
impl From<Equal> for Instruction { impl From<Equal> for Instruction {
fn from(equal: Equal) -> Self { fn from(equal: Equal) -> Self {
*Instruction::new(Operation::Equal) let operation = Operation::EQUAL;
.set_a_to_boolean(equal.value) let (b, b_is_constant) = equal.left.as_index_and_constant_flag();
.set_b(equal.left.index()) let (c, c_is_constant) = equal.right.as_index_and_constant_flag();
.set_b_is_constant(equal.left.is_constant()) let d = equal.value;
.set_b_is_local(equal.left.is_local())
.set_c(equal.right.index()) Instruction::new(operation, 0, b, c, b_is_constant, c_is_constant, d)
.set_c_is_constant(equal.right.is_constant())
.set_c_is_local(equal.right.is_local())
} }
} }

View File

@ -1,35 +1,28 @@
use crate::{Destination, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct GetLocal { pub struct GetLocal {
pub destination: Destination, pub destination: u8,
pub local_index: u16, pub local_index: u8,
} }
impl From<&Instruction> for GetLocal { impl From<Instruction> for GetLocal {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let local_index = instruction.b_field();
} else {
Destination::Register(instruction.a())
};
GetLocal { GetLocal {
destination, destination,
local_index: instruction.b(), local_index,
} }
} }
} }
impl From<GetLocal> for Instruction { impl From<GetLocal> for Instruction {
fn from(get_local: GetLocal) -> Self { fn from(get_local: GetLocal) -> Self {
let (a, a_is_local) = match get_local.destination { let operation = Operation::GET_LOCAL;
Destination::Local(local) => (local, true), let a = get_local.destination;
Destination::Register(register) => (register, false), let b = get_local.local_index;
};
*Instruction::new(Operation::GetLocal) Instruction::new(operation, a, b, 0, false, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(get_local.local_index)
} }
} }

View File

@ -1,23 +1,25 @@
use crate::{Instruction, Operation}; use crate::{Instruction, Operation};
pub struct Jump { pub struct Jump {
pub offset: u16, pub offset: u8,
pub is_positive: bool, pub is_positive: bool,
} }
impl From<&Instruction> for Jump { impl From<Instruction> for Jump {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
Jump { Jump {
offset: instruction.b(), offset: instruction.b_field(),
is_positive: instruction.c_as_boolean(), is_positive: instruction.c_field() != 0,
} }
} }
} }
impl From<Jump> for Instruction { impl From<Jump> for Instruction {
fn from(jump: Jump) -> Self { fn from(jump: Jump) -> Self {
*Instruction::new(Operation::Jump) let operation = Operation::JUMP;
.set_b(jump.offset) let b = jump.offset;
.set_c_to_boolean(jump.is_positive) let c = jump.is_positive as u8;
Instruction::new(operation, 0, b, c, false, false, false)
} }
} }

View File

@ -6,27 +6,22 @@ pub struct Less {
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Less { impl From<Instruction> for Less {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let value = instruction.d_field();
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Less { Less { value, left, right }
value: instruction.a_as_boolean(),
left,
right,
}
} }
} }
impl From<Less> for Instruction { impl From<Less> for Instruction {
fn from(less: Less) -> Self { fn from(less: Less) -> Self {
*Instruction::new(Operation::Less) let operation = Operation::LESS;
.set_a_to_boolean(less.value) let (b, b_is_constant) = less.left.as_index_and_constant_flag();
.set_b(less.left.index()) let (c, c_is_constant) = less.right.as_index_and_constant_flag();
.set_b_is_constant(less.left.is_constant()) let d = less.value;
.set_b_is_local(less.left.is_local())
.set_c(less.right.index()) Instruction::new(operation, 0, b, c, b_is_constant, c_is_constant, d)
.set_c_is_constant(less.right.is_constant())
.set_c_is_local(less.right.is_local())
} }
} }

View File

@ -6,27 +6,22 @@ pub struct LessEqual {
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for LessEqual { impl From<Instruction> for LessEqual {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let value = instruction.d_field();
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
LessEqual { LessEqual { value, left, right }
value: instruction.a_as_boolean(),
left,
right,
}
} }
} }
impl From<LessEqual> for Instruction { impl From<LessEqual> for Instruction {
fn from(less_equal: LessEqual) -> Self { fn from(less_equal: LessEqual) -> Self {
*Instruction::new(Operation::LessEqual) let operation = Operation::LESS_EQUAL;
.set_a_to_boolean(less_equal.value) let (b, b_options) = less_equal.left.as_index_and_constant_flag();
.set_b(less_equal.left.index()) let (c, c_options) = less_equal.right.as_index_and_constant_flag();
.set_b_is_constant(less_equal.left.is_constant()) let d = less_equal.value;
.set_b_is_local(less_equal.left.is_local())
.set_c(less_equal.right.index()) Instruction::new(operation, 0, b, c, b_options, c_options, d)
.set_c_is_constant(less_equal.right.is_constant())
.set_c_is_local(less_equal.right.is_local())
} }
} }

View File

@ -1,38 +1,28 @@
use crate::{Destination, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct LoadBoolean { pub struct LoadBoolean {
pub destination: Destination, pub destination: u8,
pub value: bool, pub value: bool,
pub jump_next: bool, pub jump_next: bool,
} }
impl From<&Instruction> for LoadBoolean { impl From<Instruction> for LoadBoolean {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() {
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
LoadBoolean { LoadBoolean {
destination, destination: instruction.a_field(),
value: instruction.b_as_boolean(), value: instruction.b_field() != 0,
jump_next: instruction.c_as_boolean(), jump_next: instruction.c_field() != 0,
} }
} }
} }
impl From<LoadBoolean> for Instruction { impl From<LoadBoolean> for Instruction {
fn from(load_boolean: LoadBoolean) -> Self { fn from(load_boolean: LoadBoolean) -> Self {
let (a, a_is_local) = match load_boolean.destination { let operation = Operation::LOAD_BOOLEAN;
Destination::Local(local) => (local, true), let a = load_boolean.destination;
Destination::Register(register) => (register, false), let b = load_boolean.value as u8;
}; let c = load_boolean.jump_next as u8;
*Instruction::new(Operation::LoadBoolean) Instruction::new(operation, a, b, c, false, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b_to_boolean(load_boolean.value)
.set_c_to_boolean(load_boolean.jump_next)
} }
} }

View File

@ -1,38 +1,52 @@
use crate::{Destination, Instruction, Operation}; use std::fmt::{self, Display, Formatter};
use crate::{Instruction, Operation};
pub struct LoadConstant { pub struct LoadConstant {
pub destination: Destination, pub destination: u8,
pub constant_index: u16, pub constant_index: u8,
pub jump_next: bool, pub jump_next: bool,
} }
impl From<&Instruction> for LoadConstant { impl From<Instruction> for LoadConstant {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let constant_index = instruction.b_field();
} else { let jump_next = instruction.c_field() != 0;
Destination::Register(instruction.a())
};
LoadConstant { LoadConstant {
destination, destination,
constant_index: instruction.b(), constant_index,
jump_next: instruction.c_as_boolean(), jump_next,
} }
} }
} }
impl From<LoadConstant> for Instruction { impl From<LoadConstant> for Instruction {
fn from(load_constant: LoadConstant) -> Self { fn from(load_constant: LoadConstant) -> Self {
let (a, a_is_local) = match load_constant.destination { let operation = Operation::LOAD_CONSTANT;
Destination::Local(local) => (local, true), let a = load_constant.destination;
Destination::Register(register) => (register, false), let b = load_constant.constant_index;
}; let c = load_constant.jump_next as u8;
*Instruction::new(Operation::LoadConstant) Instruction::new(operation, a, b, c, false, false, false)
.set_a(a) }
.set_a_is_local(a_is_local) }
.set_b(load_constant.constant_index)
.set_c_to_boolean(load_constant.jump_next) impl Display for LoadConstant {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let LoadConstant {
destination,
constant_index,
jump_next,
} = self;
write!(f, "R{destination} = Constant {constant_index}")?;
if *jump_next {
write!(f, " JUMP +1")
} else {
Ok(())
}
} }
} }

View File

@ -0,0 +1,40 @@
use std::fmt::{self, Display, Formatter};
use super::{Instruction, Operation};
pub struct LoadFunction {
pub destination: u8,
pub prototype_index: u8,
}
impl From<Instruction> for LoadFunction {
fn from(instruction: Instruction) -> Self {
let destination = instruction.a_field();
let record_index = instruction.b_field();
LoadFunction {
destination,
prototype_index: record_index,
}
}
}
impl From<LoadFunction> for Instruction {
fn from(load_function: LoadFunction) -> Self {
Instruction::new(
Operation::LOAD_FUNCTION,
load_function.destination,
load_function.prototype_index,
0,
false,
false,
false,
)
}
}
impl Display for LoadFunction {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "R{} = F{}", self.destination, self.prototype_index)
}
}

View File

@ -1,35 +1,28 @@
use crate::{Destination, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct LoadList { pub struct LoadList {
pub destination: Destination, pub destination: u8,
pub start_register: u16, pub start_register: u8,
} }
impl From<&Instruction> for LoadList { impl From<Instruction> for LoadList {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let start_register = instruction.b_field();
} else {
Destination::Register(instruction.a())
};
LoadList { LoadList {
destination, destination,
start_register: instruction.b(), start_register,
} }
} }
} }
impl From<LoadList> for Instruction { impl From<LoadList> for Instruction {
fn from(load_list: LoadList) -> Self { fn from(load_list: LoadList) -> Self {
let (a, a_is_local) = match load_list.destination { let operation = Operation::LOAD_LIST;
Destination::Local(local) => (local, true), let a = load_list.destination;
Destination::Register(register) => (register, false), let b = load_list.start_register;
};
*Instruction::new(Operation::LoadList) Instruction::new(operation, a, b, 0, false, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(load_list.start_register)
} }
} }

View File

@ -1,16 +1,12 @@
use crate::{Destination, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct LoadSelf { pub struct LoadSelf {
pub destination: Destination, pub destination: u8,
} }
impl From<&Instruction> for LoadSelf { impl From<Instruction> for LoadSelf {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
LoadSelf { destination } LoadSelf { destination }
} }
@ -18,13 +14,9 @@ impl From<&Instruction> for LoadSelf {
impl From<LoadSelf> for Instruction { impl From<LoadSelf> for Instruction {
fn from(load_self: LoadSelf) -> Self { fn from(load_self: LoadSelf) -> Self {
let (a, a_is_local) = match load_self.destination { let operation = Operation::LOAD_SELF;
Destination::Local(local) => (local, true), let a = load_self.destination;
Destination::Register(register) => (register, false),
};
*Instruction::new(Operation::LoadSelf) Instruction::new(operation, a, 0, 0, false, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
} }
} }

File diff suppressed because it is too large Load Diff

View File

@ -1,18 +1,14 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Modulo { pub struct Modulo {
pub destination: Destination, pub destination: u8,
pub left: Argument, pub left: Argument,
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Modulo { impl From<Instruction> for Modulo {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Modulo { Modulo {
@ -25,19 +21,11 @@ impl From<&Instruction> for Modulo {
impl From<Modulo> for Instruction { impl From<Modulo> for Instruction {
fn from(modulo: Modulo) -> Self { fn from(modulo: Modulo) -> Self {
let (a, a_is_local) = match modulo.destination { let operation = Operation::MODULO;
Destination::Local(local) => (local, true), let a = modulo.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = modulo.left.as_index_and_constant_flag();
}; let (c, c_is_constant) = modulo.right.as_index_and_constant_flag();
*Instruction::new(Operation::Modulo) Instruction::new(operation, a, b, c, b_is_constant, c_is_constant, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(modulo.left.index())
.set_b_is_constant(modulo.left.is_constant())
.set_b_is_local(modulo.left.is_local())
.set_c(modulo.right.index())
.set_c_is_constant(modulo.right.is_constant())
.set_c_is_local(modulo.right.is_local())
} }
} }

View File

@ -1,23 +0,0 @@
use crate::{Instruction, Operation};
pub struct Move {
pub from: u16,
pub to: u16,
}
impl From<&Instruction> for Move {
fn from(instruction: &Instruction) -> Self {
Move {
from: instruction.b(),
to: instruction.a(),
}
}
}
impl From<Move> for Instruction {
fn from(r#move: Move) -> Self {
*Instruction::new(Operation::Move)
.set_b(r#move.from)
.set_c(r#move.to)
}
}

View File

@ -1,18 +1,14 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Multiply { pub struct Multiply {
pub destination: Destination, pub destination: u8,
pub left: Argument, pub left: Argument,
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Multiply { impl From<Instruction> for Multiply {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Multiply { Multiply {
@ -25,19 +21,11 @@ impl From<&Instruction> for Multiply {
impl From<Multiply> for Instruction { impl From<Multiply> for Instruction {
fn from(multiply: Multiply) -> Self { fn from(multiply: Multiply) -> Self {
let (a, a_is_local) = match multiply.destination { let operation = Operation::MULTIPLY;
Destination::Local(local) => (local, true), let a = multiply.destination;
Destination::Register(register) => (register, false), let (b, b_options) = multiply.left.as_index_and_constant_flag();
}; let (c, c_options) = multiply.right.as_index_and_constant_flag();
*Instruction::new(Operation::Multiply) Instruction::new(operation, a, b, c, b_options, c_options, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(multiply.left.index())
.set_b_is_constant(multiply.left.is_constant())
.set_b_is_local(multiply.left.is_local())
.set_c(multiply.right.index())
.set_c_is_constant(multiply.right.is_constant())
.set_c_is_local(multiply.right.is_local())
} }
} }

View File

@ -1,37 +1,29 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Negate { pub struct Negate {
pub destination: Destination, pub destination: u8,
pub argument: Argument, pub argument: Argument,
} }
impl From<&Instruction> for Negate { impl From<Instruction> for Negate {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let argument = instruction.b_as_argument();
} else {
Destination::Register(instruction.a())
};
Negate { Negate {
destination, destination,
argument: instruction.b_as_argument(), argument,
} }
} }
} }
impl From<Negate> for Instruction { impl From<Negate> for Instruction {
fn from(negate: Negate) -> Self { fn from(negate: Negate) -> Self {
let (a, a_is_local) = match negate.destination { let operation = Operation::NEGATE;
Destination::Local(local) => (local, true), let a = negate.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = negate.argument.as_index_and_constant_flag();
}; let c = 0;
*Instruction::new(Operation::Negate) Instruction::new(operation, a, b, c, b_is_constant, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(negate.argument.index())
.set_b_is_constant(negate.argument.is_constant())
.set_b_is_local(negate.argument.is_local())
} }
} }

View File

@ -1,37 +1,28 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct Not { pub struct Not {
pub destination: Destination, pub destination: u8,
pub argument: Argument, pub argument: Argument,
} }
impl From<&Instruction> for Not { impl From<Instruction> for Not {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let argument = instruction.b_as_argument();
} else {
Destination::Register(instruction.a())
};
Not { Not {
destination, destination,
argument: instruction.b_as_argument(), argument,
} }
} }
} }
impl From<Not> for Instruction { impl From<Not> for Instruction {
fn from(not: Not) -> Self { fn from(not: Not) -> Self {
let (a, a_is_local) = match not.destination { let operation = Operation::NOT;
Destination::Local(local) => (local, true), let a = not.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = not.argument.as_index_and_constant_flag();
};
*Instruction::new(Operation::Not) Instruction::new(operation, a, b, 0, b_is_constant, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(not.argument.index())
.set_b_is_constant(not.argument.is_constant())
.set_b_is_local(not.argument.is_local())
} }
} }

View File

@ -0,0 +1,86 @@
//! Part of an [Instruction][crate::Instruction] that is encoded as a single byte.
use std::fmt::{self, Debug, Display, Formatter};
use serde::{Deserialize, Serialize};
/// Part of an [Instruction][crate::Instruction] that is encoded as a single byte.
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Operation(pub u8);
impl Operation {
pub const POINT: Operation = Operation(0);
pub const CLOSE: Operation = Operation(1);
pub const LOAD_BOOLEAN: Operation = Operation(2);
pub const LOAD_CONSTANT: Operation = Operation(3);
pub const LOAD_FUNCTION: Operation = Operation(4);
pub const LOAD_LIST: Operation = Operation(5);
pub const LOAD_SELF: Operation = Operation(6);
pub const GET_LOCAL: Operation = Operation(7);
pub const SET_LOCAL: Operation = Operation(8);
pub const ADD: Operation = Operation(9);
pub const SUBTRACT: Operation = Operation(10);
pub const MULTIPLY: Operation = Operation(11);
pub const DIVIDE: Operation = Operation(12);
pub const MODULO: Operation = Operation(13);
pub const TEST: Operation = Operation(14);
pub const TEST_SET: Operation = Operation(15);
pub const EQUAL: Operation = Operation(16);
pub const LESS: Operation = Operation(17);
pub const LESS_EQUAL: Operation = Operation(18);
pub const NEGATE: Operation = Operation(19);
pub const NOT: Operation = Operation(20);
pub const CALL: Operation = Operation(21);
pub const CALL_NATIVE: Operation = Operation(22);
pub const JUMP: Operation = Operation(23);
pub const RETURN: Operation = Operation(24);
}
impl Operation {
pub fn name(&self) -> &'static str {
match *self {
Self::POINT => "POINT",
Self::CLOSE => "CLOSE",
Self::LOAD_BOOLEAN => "LOAD_BOOLEAN",
Self::LOAD_CONSTANT => "LOAD_CONSTANT",
Self::LOAD_FUNCTION => "LOAD_FUNCTION",
Self::LOAD_LIST => "LOAD_LIST",
Self::LOAD_SELF => "LOAD_SELF",
Self::GET_LOCAL => "GET_LOCAL",
Self::SET_LOCAL => "SET_LOCAL",
Self::ADD => "ADD",
Self::SUBTRACT => "SUBTRACT",
Self::MULTIPLY => "MULTIPLY",
Self::DIVIDE => "DIVIDE",
Self::MODULO => "MODULO",
Self::TEST => "TEST",
Self::TEST_SET => "TEST_SET",
Self::EQUAL => "EQUAL",
Self::LESS => "LESS",
Self::LESS_EQUAL => "LESS_EQUAL",
Self::NEGATE => "NEGATE",
Self::NOT => "NOT",
Self::CALL => "CALL",
Self::CALL_NATIVE => "CALL_NATIVE",
Self::JUMP => "JUMP",
Self::RETURN => "RETURN",
_ => Self::panic_from_unknown_code(self.0),
}
}
pub fn panic_from_unknown_code(code: u8) -> ! {
panic!("Unknown operation code: {code}");
}
}
impl Debug for Operation {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.name())
}
}
impl Display for Operation {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.name())
}
}

View File

@ -0,0 +1,35 @@
use std::fmt::{self, Display, Formatter};
use crate::{Instruction, Operation};
pub struct Point {
pub from: u8,
pub to: u8,
}
impl From<Instruction> for Point {
fn from(instruction: Instruction) -> Self {
Point {
from: instruction.b_field(),
to: instruction.c_field(),
}
}
}
impl Display for Point {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let Point { from, to } = self;
write!(f, "{from} -> {to}")
}
}
impl From<Point> for Instruction {
fn from(r#move: Point) -> Self {
let operation = Operation::POINT;
let b = r#move.from;
let c = r#move.to;
Instruction::new(operation, 0, b, c, false, false, false)
}
}

View File

@ -2,18 +2,27 @@ use crate::{Instruction, Operation};
pub struct Return { pub struct Return {
pub should_return_value: bool, pub should_return_value: bool,
pub return_register: u8,
} }
impl From<&Instruction> for Return { impl From<Instruction> for Return {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let should_return_value = instruction.b_field() != 0;
let return_register = instruction.c_field();
Return { Return {
should_return_value: instruction.b_as_boolean(), should_return_value,
return_register,
} }
} }
} }
impl From<Return> for Instruction { impl From<Return> for Instruction {
fn from(r#return: Return) -> Self { fn from(r#return: Return) -> Self {
*Instruction::new(Operation::Return).set_b_to_boolean(r#return.should_return_value) let operation = Operation::RETURN;
let b = r#return.should_return_value as u8;
let c = r#return.return_register;
Instruction::new(operation, 0, b, c, false, false, false)
} }
} }

View File

@ -1,23 +1,28 @@
use crate::{Instruction, Operation}; use crate::{Instruction, Operation};
pub struct SetLocal { pub struct SetLocal {
pub register: u16, pub register_index: u8,
pub local_index: u16, pub local_index: u8,
} }
impl From<&Instruction> for SetLocal { impl From<Instruction> for SetLocal {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let register_index = instruction.b_field();
let local_index = instruction.c_field();
SetLocal { SetLocal {
register: instruction.a(), register_index,
local_index: instruction.b(), local_index,
} }
} }
} }
impl From<SetLocal> for Instruction { impl From<SetLocal> for Instruction {
fn from(set_local: SetLocal) -> Self { fn from(set_local: SetLocal) -> Self {
*Instruction::new(Operation::SetLocal) let operation = Operation::SET_LOCAL;
.set_a(set_local.register) let b = set_local.register_index;
.set_b(set_local.local_index) let c = set_local.local_index;
Instruction::new(operation, 0, b, c, false, false, false)
} }
} }

View File

@ -1,18 +1,14 @@
use crate::{Argument, Destination, Instruction}; use crate::{Argument, Instruction, Operation};
pub struct Subtract { pub struct Subtract {
pub destination: Destination, pub destination: u8,
pub left: Argument, pub left: Argument,
pub right: Argument, pub right: Argument,
} }
impl From<&Instruction> for Subtract { impl From<Instruction> for Subtract {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a())
} else {
Destination::Register(instruction.a())
};
let (left, right) = instruction.b_and_c_as_arguments(); let (left, right) = instruction.b_and_c_as_arguments();
Subtract { Subtract {
@ -25,19 +21,11 @@ impl From<&Instruction> for Subtract {
impl From<Subtract> for Instruction { impl From<Subtract> for Instruction {
fn from(subtract: Subtract) -> Self { fn from(subtract: Subtract) -> Self {
let (a, a_is_local) = match subtract.destination { let operation = Operation::SUBTRACT;
Destination::Local(local) => (local, true), let a = subtract.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = subtract.left.as_index_and_constant_flag();
}; let (c, c_is_constant) = subtract.right.as_index_and_constant_flag();
*Instruction::new(crate::Operation::Subtract) Instruction::new(operation, a, b, c, b_is_constant, c_is_constant, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(subtract.left.index())
.set_b_is_constant(subtract.left.is_constant())
.set_b_is_local(subtract.left.is_local())
.set_c(subtract.right.index())
.set_c_is_constant(subtract.right.is_constant())
.set_c_is_local(subtract.right.is_local())
} }
} }

View File

@ -1,25 +1,32 @@
use crate::{Argument, Instruction, Operation}; use crate::{Instruction, Operation};
pub struct Test { pub struct Test {
pub argument: Argument, pub operand_register: u8,
pub test_value: bool, pub test_value: bool,
} }
impl From<&Instruction> for Test { impl From<Instruction> for Test {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let operand_register = instruction.b_field();
let test_value = instruction.c_field() != 0;
Test { Test {
argument: instruction.b_as_argument(), operand_register,
test_value: instruction.c_as_boolean(), test_value,
} }
} }
} }
impl From<Test> for Instruction { impl From<Test> for Instruction {
fn from(test: Test) -> Self { fn from(test: Test) -> Self {
*Instruction::new(Operation::Test) Instruction::new(
.set_b(test.argument.index()) Operation::TEST,
.set_b_is_constant(test.argument.is_constant()) 0,
.set_b_is_local(test.argument.is_local()) test.operand_register,
.set_c_to_boolean(test.test_value) test.test_value as u8,
false,
false,
false,
)
} }
} }

View File

@ -1,40 +1,32 @@
use crate::{Argument, Destination, Instruction, Operation}; use crate::{Argument, Instruction, Operation};
pub struct TestSet { pub struct TestSet {
pub destination: Destination, pub destination: u8,
pub argument: Argument, pub argument: Argument,
pub test_value: bool, pub test_value: bool,
} }
impl From<&Instruction> for TestSet { impl From<Instruction> for TestSet {
fn from(instruction: &Instruction) -> Self { fn from(instruction: Instruction) -> Self {
let destination = if instruction.a_is_local() { let destination = instruction.a_field();
Destination::Local(instruction.a()) let argument = instruction.b_as_argument();
} else { let test_value = instruction.c_field() != 0;
Destination::Register(instruction.a())
};
TestSet { TestSet {
destination, destination,
argument: instruction.b_as_argument(), argument,
test_value: instruction.c_as_boolean(), test_value,
} }
} }
} }
impl From<TestSet> for Instruction { impl From<TestSet> for Instruction {
fn from(test_set: TestSet) -> Self { fn from(test_set: TestSet) -> Self {
let (a, a_is_local) = match test_set.destination { let operation = Operation::TEST;
Destination::Local(local) => (local, true), let a = test_set.destination;
Destination::Register(register) => (register, false), let (b, b_is_constant) = test_set.argument.as_index_and_constant_flag();
}; let c = test_set.test_value as u8;
*Instruction::new(Operation::TestSet) Instruction::new(operation, a, b, c, b_is_constant, false, false)
.set_a(a)
.set_a_is_local(a_is_local)
.set_b(test_set.argument.index())
.set_b_is_constant(test_set.argument.is_constant())
.set_b_is_local(test_set.argument.is_local())
.set_c_to_boolean(test_set.test_value)
} }
} }

View File

@ -3,9 +3,6 @@
//! This module provides two lexing options: //! This module provides two lexing options:
//! - [`lex`], which lexes the entire input and returns a vector of tokens and their positions //! - [`lex`], which lexes the entire input and returns a vector of tokens and their positions
//! - [`Lexer`], which lexes the input a token at a time //! - [`Lexer`], which lexes the input a token at a time
use std::fmt::{self, Display, Formatter};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use crate::{dust_error::AnnotatedError, CompileError, DustError, Span, Token}; use crate::{dust_error::AnnotatedError, CompileError, DustError, Span, Token};
@ -35,10 +32,9 @@ pub fn lex(source: &str) -> Result<Vec<(Token, Span)>, DustError> {
let mut tokens = Vec::new(); let mut tokens = Vec::new();
loop { loop {
let (token, span) = lexer.next_token().map_err(|error| DustError::Compile { let (token, span) = lexer
error: CompileError::Lex(error), .next_token()
source, .map_err(|error| DustError::compile(CompileError::Lex(error), source))?;
})?;
tokens.push((token, span)); tokens.push((token, span));
@ -50,7 +46,7 @@ pub fn lex(source: &str) -> Result<Vec<(Token, Span)>, DustError> {
Ok(tokens) Ok(tokens)
} }
/// Low-level tool for lexing a single token at a time. /// Tool for lexing a single token at a time.
/// ///
/// See the [`lex`] function for an example of how to create and use a Lexer. /// See the [`lex`] function for an example of how to create and use a Lexer.
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)] #[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
@ -199,10 +195,6 @@ impl<'src> Lexer<'src> {
self.next_char(); self.next_char();
while let Some(peek_char) = self.peek_char() { while let Some(peek_char) = self.peek_char() {
if peek_char == ' ' {
break;
}
if let '0'..='9' = peek_char { if let '0'..='9' = peek_char {
self.next_char(); self.next_char();
@ -211,32 +203,28 @@ impl<'src> Lexer<'src> {
let peek_second_char = self.peek_second_char(); let peek_second_char = self.peek_second_char();
if let ('e', Some('0'..='9')) = (peek_char, peek_second_char) { if let ('e' | 'E', Some('0'..='9')) = (peek_char, peek_second_char) {
self.next_char(); self.next_char();
self.next_char(); self.next_char();
continue; continue;
} }
if let ('e', Some('-')) = (peek_char, peek_second_char) { if let ('e' | 'E', Some('+' | '-')) = (peek_char, peek_second_char) {
self.next_char(); self.next_char();
self.next_char(); self.next_char();
continue; continue;
} }
return Err(LexError::ExpectedCharacterMultiple { break;
expected: &['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'e', '-'],
actual: peek_char,
position: self.position,
});
} }
} else { } else {
break; break;
} }
} }
if c.is_ascii_digit() { if c.is_ascii_digit() || c == '_' {
self.next_char(); self.next_char();
} else { } else {
break; break;
@ -631,7 +619,7 @@ pub struct LexRule<'src> {
lexer: LexerFn<'src>, lexer: LexerFn<'src>,
} }
impl<'src> From<&char> for LexRule<'src> { impl From<&char> for LexRule<'_> {
fn from(char: &char) -> Self { fn from(char: &char) -> Self {
match char { match char {
'0'..='9' => LexRule { '0'..='9' => LexRule {
@ -756,65 +744,12 @@ impl AnnotatedError for LexError {
} }
} }
fn details(&self) -> Option<String> { fn detail_snippets(&self) -> Vec<(String, Span)> {
match self { Vec::with_capacity(0)
Self::ExpectedAsciiHexDigit { actual, .. } => Some(format!(
"Expected ASCII hex digit (0-9 or A-F), found \"{}\"",
actual
.map(|character| character.to_string())
.unwrap_or("end of input".to_string())
)),
Self::ExpectedCharacter {
expected, actual, ..
} => Some(format!(
"Expected character \"{}\", found \"{}\"",
expected, actual
)),
Self::ExpectedCharacterMultiple {
expected, actual, ..
} => {
let mut details = "Expected one of the following characters ".to_string();
for (i, c) in expected.iter().enumerate() {
if i == expected.len() - 1 {
details.push_str(", or ");
} else if i > 0 {
details.push_str(", ");
}
details.push(*c);
}
details.push_str(&format!(" but found {}", actual));
Some(details)
}
Self::UnexpectedCharacter { actual, .. } => {
Some(format!("Unexpected character \"{}\"", actual))
}
Self::UnexpectedEndOfFile { .. } => Some("Unexpected end of file".to_string()),
}
} }
fn position(&self) -> Span { fn help_snippets(&self) -> Vec<(String, Span)> {
match self { Vec::with_capacity(0)
Self::ExpectedAsciiHexDigit { position, .. } => Span(*position, *position),
Self::ExpectedCharacter { position, .. } => Span(*position, *position),
Self::ExpectedCharacterMultiple { position, .. } => Span(*position, *position),
Self::UnexpectedCharacter { position, .. } => Span(*position, *position),
Self::UnexpectedEndOfFile { position } => Span(*position, *position),
}
}
}
impl Display for LexError {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.description())?;
if let Some(details) = self.details() {
write!(f, ": {}", details)?;
}
Ok(())
} }
} }

View File

@ -30,33 +30,27 @@
pub mod chunk; pub mod chunk;
pub mod compiler; pub mod compiler;
pub mod disassembler;
pub mod dust_error; pub mod dust_error;
pub mod instruction; pub mod instruction;
pub mod lexer; pub mod lexer;
pub mod native_function; pub mod native_function;
pub mod operation;
pub mod optimize;
pub mod scope;
pub mod token; pub mod token;
pub mod r#type; pub mod r#type;
pub mod value; pub mod value;
pub mod vm; pub mod vm;
pub use crate::chunk::{Chunk, Local}; pub use crate::chunk::{Chunk, Disassembler, Local, Scope};
pub use crate::compiler::{compile, CompileError, Compiler}; pub use crate::compiler::{compile, CompileError, Compiler};
pub use crate::disassembler::Disassembler;
pub use crate::dust_error::{AnnotatedError, DustError}; pub use crate::dust_error::{AnnotatedError, DustError};
pub use crate::instruction::{Argument, Destination, Instruction}; pub use crate::instruction::{Argument, Instruction, InstructionData, Operation};
pub use crate::lexer::{lex, LexError, Lexer}; pub use crate::lexer::{lex, LexError, Lexer};
pub use crate::native_function::{NativeFunction, NativeFunctionError}; pub use crate::native_function::{NativeFunction, NativeFunctionError};
pub use crate::operation::Operation;
pub use crate::optimize::{optimize_control_flow, optimize_set_local};
pub use crate::r#type::{EnumType, FunctionType, StructType, Type, TypeConflict}; pub use crate::r#type::{EnumType, FunctionType, StructType, Type, TypeConflict};
pub use crate::scope::Scope; pub use crate::token::{Token, TokenKind, TokenOwned};
pub use crate::token::{write_token_list, Token, TokenKind, TokenOwned}; pub use crate::value::{
pub use crate::value::{AbstractValue, ConcreteValue, RangeValue, Value, ValueError, ValueRef}; AbstractList, ConcreteValue, DustString, Function, RangeValue, Value, ValueError,
pub use crate::vm::{run, Vm, VmError}; };
pub use crate::vm::{run, Pointer, Vm};
use std::fmt::Display; use std::fmt::Display;

View File

@ -0,0 +1,22 @@
use std::{ops::Range, panic};
use crate::vm::ThreadData;
pub fn panic(data: &mut ThreadData, _: Option<u8>, argument_range: Range<u8>) -> bool {
let position = data.current_position();
let mut message = format!("Dust panic at {position}!");
for register_index in argument_range {
let value_option = data.open_register_allow_empty_unchecked(register_index);
let value = match value_option {
Some(value) => value,
None => continue,
};
let string = value.display(data);
message.push_str(&string);
message.push('\n');
}
panic!("{}", message)
}

View File

@ -0,0 +1,67 @@
use std::io::{stdin, stdout, Write};
use std::ops::Range;
use crate::{
vm::{get_next_action, Register, ThreadData},
ConcreteValue, Value,
};
pub fn read_line(
data: &mut ThreadData,
destination: Option<u8>,
_argument_range: Range<u8>,
) -> bool {
let destination = destination.unwrap();
let mut buffer = String::new();
if stdin().read_line(&mut buffer).is_ok() {
let length = buffer.len();
buffer.truncate(length.saturating_sub(1));
let register = Register::Value(Value::Concrete(ConcreteValue::string(buffer)));
data.set_register(destination, register);
}
data.next_action = get_next_action(data);
false
}
pub fn write(data: &mut ThreadData, _destination: Option<u8>, argument_range: Range<u8>) -> bool {
let mut stdout = stdout();
for register_index in argument_range {
if let Some(value) = data.open_register_allow_empty_unchecked(register_index) {
let string = value.display(data);
let _ = stdout.write(string.as_bytes());
}
}
let _ = stdout.flush();
data.next_action = get_next_action(data);
false
}
pub fn write_line(
data: &mut ThreadData,
_destination: Option<u8>,
argument_range: Range<u8>,
) -> bool {
let mut stdout = stdout().lock();
for register_index in argument_range {
if let Some(value) = data.open_register_allow_empty_unchecked(register_index) {
let string = value.display(data);
let _ = stdout.write(string.as_bytes());
let _ = stdout.write(b"\n");
}
}
let _ = stdout.flush();
data.next_action = get_next_action(data);
false
}

View File

@ -1,151 +0,0 @@
use std::io::{self, stdout, Write};
use crate::{ConcreteValue, Instruction, NativeFunctionError, Value, Vm, VmError};
pub fn panic<'a>(vm: &'a Vm<'a>, instruction: Instruction) -> Result<Option<Value>, VmError> {
let argument_count = instruction.c();
let message = if argument_count == 0 {
None
} else {
let mut message = String::new();
for argument_index in 0..argument_count {
if argument_index != 0 {
message.push(' ');
}
let argument = if let Some(value) = vm.open_register_allow_empty(argument_index)? {
value
} else {
continue;
};
let argument_string = argument.display(vm)?;
message.push_str(&argument_string);
}
Some(message)
};
Err(VmError::NativeFunction(NativeFunctionError::Panic {
message,
position: vm.current_position(),
}))
}
pub fn to_string<'a>(vm: &'a Vm<'a>, instruction: Instruction) -> Result<Option<Value>, VmError> {
let argument_count = instruction.c();
if argument_count != 1 {
return Err(VmError::NativeFunction(
NativeFunctionError::ExpectedArgumentCount {
expected: 1,
found: argument_count as usize,
position: vm.current_position(),
},
));
}
let mut string = String::new();
for argument_index in 0..argument_count {
let argument = if let Some(value) = vm.open_register_allow_empty(argument_index)? {
value
} else {
continue;
};
let argument_string = argument.display(vm)?;
string.push_str(&argument_string);
}
Ok(Some(Value::Concrete(ConcreteValue::String(string))))
}
pub fn read_line<'a>(vm: &'a Vm<'a>, instruction: Instruction) -> Result<Option<Value>, VmError> {
let argument_count = instruction.c();
if argument_count != 0 {
return Err(VmError::NativeFunction(
NativeFunctionError::ExpectedArgumentCount {
expected: 0,
found: argument_count as usize,
position: vm.current_position(),
},
));
}
let mut buffer = String::new();
match io::stdin().read_line(&mut buffer) {
Ok(_) => {
buffer = buffer.trim_end_matches('\n').to_string();
Ok(Some(Value::Concrete(ConcreteValue::String(buffer))))
}
Err(error) => Err(VmError::NativeFunction(NativeFunctionError::Io {
error: error.kind(),
position: vm.current_position(),
})),
}
}
pub fn write<'a>(vm: &'a Vm<'a>, instruction: Instruction) -> Result<Option<Value>, VmError> {
let to_register = instruction.a();
let argument_count = instruction.c();
let mut stdout = stdout();
let map_err = |io_error: io::Error| {
VmError::NativeFunction(NativeFunctionError::Io {
error: io_error.kind(),
position: vm.current_position(),
})
};
let first_argument = to_register.saturating_sub(argument_count);
for argument_index in first_argument..to_register {
let argument = if let Some(value) = vm.open_register_allow_empty(argument_index)? {
value
} else {
continue;
};
let argument_string = argument.display(vm)?;
stdout
.write_all(argument_string.as_bytes())
.map_err(map_err)?;
}
Ok(None)
}
pub fn write_line<'a>(vm: &'a Vm<'a>, instruction: Instruction) -> Result<Option<Value>, VmError> {
let to_register = instruction.a();
let argument_count = instruction.c();
let mut stdout = stdout();
let map_err = |io_error: io::Error| {
VmError::NativeFunction(NativeFunctionError::Io {
error: io_error.kind(),
position: vm.current_position(),
})
};
let first_argument = to_register.saturating_sub(argument_count);
for argument_index in first_argument..to_register {
let argument = if let Some(value) = vm.open_register_allow_empty(argument_index)? {
value
} else {
continue;
};
let argument_string = argument.display(vm)?;
stdout
.write_all(argument_string.as_bytes())
.map_err(map_err)?;
}
stdout.write(b"\n").map_err(map_err)?;
Ok(None)
}

View File

@ -2,17 +2,20 @@
//! //!
//! Native functions are used to implement features that are not possible to implement in Dust //! Native functions are used to implement features that are not possible to implement in Dust
//! itself or that are more efficient to implement in Rust. //! itself or that are more efficient to implement in Rust.
mod logic; mod assert;
mod io;
mod string;
use std::{ use std::{
fmt::{self, Display, Formatter}, fmt::{self, Display, Formatter},
io::{self}, io::ErrorKind as IoErrorKind,
string::{self}, ops::Range,
string::ParseError,
}; };
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use crate::{AnnotatedError, FunctionType, Instruction, Span, Type, Value, Vm, VmError}; use crate::{vm::ThreadData, AnnotatedError, FunctionType, Span, Type};
macro_rules! define_native_function { macro_rules! define_native_function {
($(($name:ident, $bytes:literal, $str:expr, $type:expr, $function:expr)),*) => { ($(($name:ident, $bytes:literal, $str:expr, $type:expr, $function:expr)),*) => {
@ -29,12 +32,13 @@ macro_rules! define_native_function {
impl NativeFunction { impl NativeFunction {
pub fn call( pub fn call(
&self, &self,
vm: &mut Vm, data: &mut ThreadData,
instruction: Instruction, destination: Option<u8>,
) -> Result<Option<Value>, VmError> { argument_range: Range<u8>,
) -> bool {
match self { match self {
$( $(
NativeFunction::$name => $function(vm, instruction), NativeFunction::$name => $function(data, destination, argument_range),
)* )*
} }
} }
@ -68,14 +72,14 @@ macro_rules! define_native_function {
pub fn returns_value(&self) -> bool { pub fn returns_value(&self) -> bool {
match self { match self {
$( $(
NativeFunction::$name => *$type.return_type != Type::None, NativeFunction::$name => $type.return_type != Type::None,
)* )*
} }
} }
} }
impl From<u16> for NativeFunction { impl From<u8> for NativeFunction {
fn from(bytes: u16) -> Self { fn from(bytes: u8) -> Self {
match bytes { match bytes {
$( $(
$bytes => NativeFunction::$name, $bytes => NativeFunction::$name,
@ -129,11 +133,11 @@ define_native_function! {
3, 3,
"panic", "panic",
FunctionType { FunctionType {
type_parameters: None, type_parameters: Vec::with_capacity(0),
value_parameters: None, value_parameters: Vec::with_capacity(0),
return_type: Box::new(Type::None) return_type: Type::None
}, },
logic::panic assert::panic
), ),
// // Type conversion // // Type conversion
@ -146,11 +150,11 @@ define_native_function! {
8, 8,
"to_string", "to_string",
FunctionType { FunctionType {
type_parameters: None, type_parameters: Vec::with_capacity(0),
value_parameters: Some(vec![(0, Type::Any)]), value_parameters: vec![(0, Type::Any)],
return_type: Box::new(Type::String) return_type: Type::String
}, },
logic::to_string string::to_string
), ),
// // List and string // // List and string
@ -207,11 +211,11 @@ define_native_function! {
50, 50,
"read_line", "read_line",
FunctionType { FunctionType {
type_parameters: None, type_parameters: Vec::with_capacity(0),
value_parameters: None, value_parameters: Vec::with_capacity(0),
return_type: Box::new(Type::String) return_type: Type::String
}, },
logic::read_line io::read_line
), ),
// (ReadTo, 51_u8, "read_to", false), // (ReadTo, 51_u8, "read_to", false),
// (ReadUntil, 52_u8, "read_until", true), // (ReadUntil, 52_u8, "read_until", true),
@ -223,11 +227,11 @@ define_native_function! {
55, 55,
"write", "write",
FunctionType { FunctionType {
type_parameters: None, type_parameters: Vec::with_capacity(0),
value_parameters: Some(vec![(0, Type::String)]), value_parameters: vec![(0, Type::String)],
return_type: Box::new(Type::None) return_type: Type::None
}, },
logic::write io::write
), ),
// (WriteFile, 56_u8, "write_file", false), // (WriteFile, 56_u8, "write_file", false),
( (
@ -235,11 +239,11 @@ define_native_function! {
57, 57,
"write_line", "write_line",
FunctionType { FunctionType {
type_parameters: None, type_parameters: Vec::with_capacity(0),
value_parameters: Some(vec![(0, Type::String)]), value_parameters: vec![(0, Type::String)],
return_type: Box::new(Type::None) return_type: Type::None
}, },
logic::write_line io::write_line
) )
// // Random // // Random
@ -255,15 +259,15 @@ pub enum NativeFunctionError {
position: Span, position: Span,
}, },
Panic { Panic {
message: Option<String>, message: String,
position: Span, position: Span,
}, },
Parse { Parse {
error: string::ParseError, error: ParseError,
position: Span, position: Span,
}, },
Io { Io {
error: io::ErrorKind, error: IoErrorKind,
position: Span, position: Span,
}, },
} }
@ -284,23 +288,29 @@ impl AnnotatedError for NativeFunctionError {
} }
} }
fn details(&self) -> Option<String> { fn detail_snippets(&self) -> Vec<(String, Span)> {
match self { match self {
NativeFunctionError::ExpectedArgumentCount { NativeFunctionError::ExpectedArgumentCount {
expected, found, .. expected,
} => Some(format!("Expected {} arguments, found {}", expected, found)), found,
NativeFunctionError::Panic { message, .. } => message.clone(), position,
NativeFunctionError::Parse { error, .. } => Some(format!("{}", error)), } => vec![(
NativeFunctionError::Io { error, .. } => Some(format!("{}", error)), format!("Expected {expected} arguments, found {found}"),
*position,
)],
NativeFunctionError::Panic { message, position } => {
vec![(format!("Dust panic!\n{message}"), *position)]
}
NativeFunctionError::Parse { error, position } => {
vec![(format!("{error}"), *position)]
}
NativeFunctionError::Io { error, position } => {
vec![(format!("{error}"), *position)]
}
} }
} }
fn position(&self) -> Span { fn help_snippets(&self) -> Vec<(String, Span)> {
match self { Vec::with_capacity(0)
NativeFunctionError::ExpectedArgumentCount { position, .. } => *position,
NativeFunctionError::Panic { position, .. } => *position,
NativeFunctionError::Parse { position, .. } => *position,
NativeFunctionError::Io { position, .. } => *position,
}
} }
} }

View File

@ -0,0 +1,23 @@
use std::ops::Range;
use crate::{
vm::{get_next_action, Register, ThreadData},
ConcreteValue, Value,
};
pub fn to_string(
data: &mut ThreadData,
destination: Option<u8>,
argument_range: Range<u8>,
) -> bool {
let argument_value = data.open_register_unchecked(argument_range.start);
let argument_string = argument_value.display(data);
let destination = destination.unwrap();
let register = Register::Value(Value::Concrete(ConcreteValue::string(argument_string)));
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}

View File

@ -1,112 +0,0 @@
//! Part of an [Instruction][crate::Instruction] that is encoded as a single byte.
use std::fmt::{self, Display, Formatter};
macro_rules! define_operation {
($(($name:ident, $byte:literal, $str:expr)),*) => {
/// Part of an [Instruction][crate::Instruction] that is encoded as a single byte.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Operation {
$(
$name = $byte as isize,
)*
}
impl From<u8> for Operation {
fn from(byte: u8) -> Self {
match byte {
$(
$byte => Operation::$name,
)*
_ => {
if cfg!(test) {
panic!("Invalid operation byte: {}", byte)
} else {
Operation::Return
}
}
}
}
}
impl From<Operation> for u8 {
fn from(operation: Operation) -> Self {
match operation {
$(
Operation::$name => $byte,
)*
}
}
}
impl Display for Operation {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
$(
Operation::$name => write!(f, "{}", $str),
)*
}
}
}
}
}
define_operation! {
(Move, 0, "MOVE"),
(Close, 1, "CLOSE"),
(LoadBoolean, 2, "LOAD_BOOLEAN"),
(LoadConstant, 3, "LOAD_CONSTANT"),
(LoadList, 4, "LOAD_LIST"),
(LoadSelf, 5, "LOAD_SELF"),
(DefineLocal, 6, "DEFINE_LOCAL"),
(GetLocal, 7, "GET_LOCAL"),
(SetLocal, 8, "SET_LOCAL"),
(Add, 9, "ADD"),
(Subtract, 10, "SUBTRACT"),
(Multiply, 11, "MULTIPLY"),
(Divide, 12, "DIVIDE"),
(Modulo, 13, "MODULO"),
(Test, 14, "TEST"),
(TestSet, 15, "TEST_SET"),
(Equal, 16, "EQUAL"),
(Less, 17, "LESS"),
(LessEqual, 18, "LESS_EQUAL"),
(Negate, 19, "NEGATE"),
(Not, 20, "NOT"),
(Call, 21, "CALL"),
(CallNative, 22, "CALL_NATIVE"),
(Jump, 23, "JUMP"),
(Return, 24, "RETURN")
}
impl Operation {
pub fn is_math(&self) -> bool {
matches!(
self,
Operation::Add
| Operation::Subtract
| Operation::Multiply
| Operation::Divide
| Operation::Modulo
)
}
pub fn is_comparison(&self) -> bool {
matches!(
self,
Operation::Equal | Operation::Less | Operation::LessEqual
)
}
pub fn is_test(&self) -> bool {
matches!(self, Operation::Test | Operation::TestSet)
}
}

View File

@ -1,111 +0,0 @@
//! Tools used by the compiler to optimize a chunk's bytecode.
use crate::{instruction::SetLocal, Instruction, Operation, Span, Type};
fn get_last_operations<const COUNT: usize>(
instructions: &[(Instruction, Type, Span)],
) -> Option<[Operation; COUNT]> {
let mut n_operations = [Operation::Return; COUNT];
for (nth, operation) in n_operations.iter_mut().rev().zip(
instructions
.iter()
.rev()
.map(|(instruction, _, _)| instruction.operation()),
) {
*nth = operation;
}
Some(n_operations)
}
/// Optimizes a short control flow pattern.
///
/// Comparison and test instructions (which are always followed by a JUMP) can be optimized when
/// the next instructions are two constant or boolean loaders. The first loader is set to skip
/// an instruction if it is run while the second loader is modified to use the first's register.
/// This makes the following two code snippets compile to the same bytecode:
///
/// ```dust
/// 4 == 4
/// ```
///
/// ```dust
/// if 4 == 4 { true } else { false }
/// ```
///
/// The instructions must be in the following order:
/// - `Equal`, `Less`, `LessEqual` or `Test`
/// - `Jump`
/// - `LoadBoolean` or `LoadConstant`
/// - `LoadBoolean` or `LoadConstant`
pub fn optimize_control_flow(instructions: &mut [(Instruction, Type, Span)]) {
if !matches!(
get_last_operations(instructions),
Some([
Operation::Equal | Operation::Less | Operation::LessEqual | Operation::Test,
Operation::Jump,
Operation::LoadBoolean | Operation::LoadConstant,
Operation::LoadBoolean | Operation::LoadConstant,
])
) {
return;
}
log::debug!("Consolidating registers for control flow optimization");
let first_loader = &mut instructions.iter_mut().nth_back(1).unwrap().0;
first_loader.set_c_to_boolean(true);
let first_loader_register = first_loader.a();
let second_loader = &mut instructions.last_mut().unwrap().0;
let second_loader_new = *second_loader.clone().set_a(first_loader_register);
*second_loader = second_loader_new;
}
/// Optimizes a math instruction followed by a SetLocal instruction.
///
/// The SetLocal instruction is removed and the math instruction is modified to use the local as
/// its destination. This makes the following two code snippets compile to the same bytecode:
///
/// ```dust
/// let a = 0;
/// a = a + 1;
/// ```
///
/// ```dust
/// let a = 0;
/// a += 1;
/// ```
///
/// The instructions must be in the following order:
/// - `Add`, `Subtract`, `Multiply`, `Divide` or `Modulo`
/// - `SetLocal`
pub fn optimize_set_local(instructions: &mut Vec<(Instruction, Type, Span)>) {
if !matches!(
get_last_operations(instructions),
Some([
Operation::Add
| Operation::Subtract
| Operation::Multiply
| Operation::Divide
| Operation::Modulo,
Operation::SetLocal,
])
) {
return;
}
log::debug!("Condensing math and SetLocal to math instruction");
let set_local = SetLocal::from(&instructions.pop().unwrap().0);
let math_instruction = instructions.last_mut().unwrap().0;
let math_instruction_new = *math_instruction
.clone()
.set_a(set_local.local_index)
.set_a_is_local(true);
instructions.last_mut().unwrap().0 = math_instruction_new;
}

View File

@ -1,32 +1,8 @@
//! Token, TokenOwned and TokenKind types. //! Token, TokenOwned and TokenKind types.
use std::{ use std::fmt::{self, Display, Formatter};
fmt::{self, Display, Formatter},
io::Write,
};
use colored::Colorize;
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use crate::Span;
pub fn write_token_list<W: Write>(tokens: &[(Token, Span)], styled: bool, writer: &mut W) {
const HEADER: [&str; 2] = [" TOKEN POSITION ", "------------- ----------"];
writeln!(writer, "{}", HEADER[0]).unwrap();
writeln!(writer, "{}", HEADER[1]).unwrap();
for (token, position) in tokens {
let token = if styled {
format!("{:^13}", token.as_str().bold())
} else {
token.to_string()
};
let position = position.to_string();
writeln!(writer, "{token:^13} {position:^10}").unwrap();
}
}
macro_rules! define_tokens { macro_rules! define_tokens {
($($variant:ident $(($data_type:ty))?),+) => { ($($variant:ident $(($data_type:ty))?),+) => {
/// Source token. /// Source token.
@ -116,7 +92,7 @@ define_tokens! {
StarEqual StarEqual
} }
impl<'src> Token<'src> { impl Token<'_> {
#[allow(clippy::len_without_is_empty)] #[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
match self { match self {
@ -405,7 +381,7 @@ impl<'src> Token<'src> {
} }
} }
impl<'src> Display for Token<'src> { impl Display for Token<'_> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result { fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self { match self {
Token::ArrowThin => write!(f, "->"), Token::ArrowThin => write!(f, "->"),
@ -603,63 +579,6 @@ impl Display for TokenOwned {
impl Display for TokenKind { impl Display for TokenKind {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self { write!(f, "{self:?}")
TokenKind::ArrowThin => Token::ArrowThin.fmt(f),
TokenKind::Async => Token::Async.fmt(f),
TokenKind::Bang => Token::Bang.fmt(f),
TokenKind::BangEqual => Token::BangEqual.fmt(f),
TokenKind::Bool => Token::Bool.fmt(f),
TokenKind::Boolean => write!(f, "boolean"),
TokenKind::Break => Token::Break.fmt(f),
TokenKind::Byte => write!(f, "byte"),
TokenKind::Character => write!(f, "character"),
TokenKind::Colon => Token::Colon.fmt(f),
TokenKind::Comma => Token::Comma.fmt(f),
TokenKind::Dot => Token::Dot.fmt(f),
TokenKind::DoubleAmpersand => Token::DoubleAmpersand.fmt(f),
TokenKind::DoubleDot => Token::DoubleDot.fmt(f),
TokenKind::DoubleEqual => Token::DoubleEqual.fmt(f),
TokenKind::DoublePipe => Token::DoublePipe.fmt(f),
TokenKind::Else => Token::Else.fmt(f),
TokenKind::Eof => Token::Eof.fmt(f),
TokenKind::Equal => Token::Equal.fmt(f),
TokenKind::Float => write!(f, "float"),
TokenKind::FloatKeyword => Token::FloatKeyword.fmt(f),
TokenKind::Fn => Token::Fn.fmt(f),
TokenKind::Greater => Token::Greater.fmt(f),
TokenKind::GreaterEqual => Token::GreaterEqual.fmt(f),
TokenKind::Identifier => write!(f, "identifier"),
TokenKind::If => Token::If.fmt(f),
TokenKind::Int => Token::Int.fmt(f),
TokenKind::Integer => write!(f, "integer"),
TokenKind::LeftBrace => Token::LeftBrace.fmt(f),
TokenKind::LeftParenthesis => Token::LeftParenthesis.fmt(f),
TokenKind::LeftBracket => Token::LeftBracket.fmt(f),
TokenKind::Let => Token::Let.fmt(f),
TokenKind::Less => Token::Less.fmt(f),
TokenKind::LessEqual => Token::LessEqual.fmt(f),
TokenKind::Loop => Token::Loop.fmt(f),
TokenKind::Map => Token::Map.fmt(f),
TokenKind::Minus => Token::Minus.fmt(f),
TokenKind::MinusEqual => Token::MinusEqual.fmt(f),
TokenKind::Mut => Token::Mut.fmt(f),
TokenKind::Percent => Token::Percent.fmt(f),
TokenKind::PercentEqual => Token::PercentEqual.fmt(f),
TokenKind::Plus => Token::Plus.fmt(f),
TokenKind::PlusEqual => Token::PlusEqual.fmt(f),
TokenKind::Return => Token::Return.fmt(f),
TokenKind::RightBrace => Token::RightBrace.fmt(f),
TokenKind::RightParenthesis => Token::RightParenthesis.fmt(f),
TokenKind::RightBracket => Token::RightBracket.fmt(f),
TokenKind::Semicolon => Token::Semicolon.fmt(f),
TokenKind::Star => Token::Star.fmt(f),
TokenKind::StarEqual => Token::StarEqual.fmt(f),
TokenKind::Str => Token::Str.fmt(f),
TokenKind::Slash => Token::Slash.fmt(f),
TokenKind::SlashEqual => Token::SlashEqual.fmt(f),
TokenKind::String => write!(f, "string"),
TokenKind::Struct => Token::Struct.fmt(f),
TokenKind::While => Token::While.fmt(f),
}
} }
} }

View File

@ -16,7 +16,7 @@ pub enum Type {
Character, Character,
Enum(EnumType), Enum(EnumType),
Float, Float,
Function(FunctionType), Function(Box<FunctionType>),
Generic { Generic {
identifier_index: u8, identifier_index: u8,
concrete_type: Option<Box<Type>>, concrete_type: Option<Box<Type>>,
@ -24,21 +24,29 @@ pub enum Type {
Integer, Integer,
List(Box<Type>), List(Box<Type>),
Map { Map {
pairs: HashMap<u8, Type>, pairs: Vec<(u8, Type)>,
}, },
None, None,
Range { Range {
r#type: Box<Type>, r#type: Box<Type>,
}, },
SelfChunk, SelfFunction,
String, String,
Struct(StructType), Struct(StructType),
Tuple { Tuple {
fields: Option<Vec<Type>>, fields: Vec<Type>,
}, },
} }
impl Type { impl Type {
pub fn function(function_type: FunctionType) -> Self {
Type::Function(Box::new(function_type))
}
pub fn list(element_type: Type) -> Self {
Type::List(Box::new(element_type))
}
/// Returns a concrete type, either the type itself or the concrete type of a generic type. /// Returns a concrete type, either the type itself or the concrete type of a generic type.
pub fn concrete_type(&self) -> &Type { pub fn concrete_type(&self) -> &Type {
if let Type::Generic { if let Type::Generic {
@ -107,18 +115,18 @@ impl Type {
return Ok(()); return Ok(());
} }
( (Type::Function(left_function_type), Type::Function(right_function_type)) => {
Type::Function(FunctionType { let FunctionType {
type_parameters: left_type_parameters, type_parameters: left_type_parameters,
value_parameters: left_value_parameters, value_parameters: left_value_parameters,
return_type: left_return, return_type: left_return,
}), } = left_function_type.as_ref();
Type::Function(FunctionType { let FunctionType {
type_parameters: right_type_parameters, type_parameters: right_type_parameters,
value_parameters: right_value_parameters, value_parameters: right_value_parameters,
return_type: right_return, return_type: right_return,
}), } = right_function_type.as_ref();
) => {
if left_return != right_return if left_return != right_return
|| left_type_parameters != right_type_parameters || left_type_parameters != right_type_parameters
|| left_value_parameters != right_value_parameters || left_value_parameters != right_value_parameters
@ -185,25 +193,21 @@ impl Display for Type {
} }
Type::None => write!(f, "none"), Type::None => write!(f, "none"),
Type::Range { r#type } => write!(f, "{type} range"), Type::Range { r#type } => write!(f, "{type} range"),
Type::SelfChunk => write!(f, "self"), Type::SelfFunction => write!(f, "self"),
Type::String => write!(f, "str"), Type::String => write!(f, "str"),
Type::Struct(struct_type) => write!(f, "{struct_type}"), Type::Struct(struct_type) => write!(f, "{struct_type}"),
Type::Tuple { fields } => { Type::Tuple { fields } => {
if let Some(fields) = fields { write!(f, "(")?;
write!(f, "(")?;
for (index, r#type) in fields.iter().enumerate() { for (index, r#type) in fields.iter().enumerate() {
write!(f, "{type}")?; if index > 0 {
write!(f, ", ")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
} }
write!(f, ")") write!(f, "{type}")?;
} else {
write!(f, "tuple")
} }
write!(f, ")")
} }
} }
} }
@ -252,8 +256,8 @@ impl Ord for Type {
left_type.cmp(right_type) left_type.cmp(right_type)
} }
(Type::Range { .. }, _) => Ordering::Greater, (Type::Range { .. }, _) => Ordering::Greater,
(Type::SelfChunk, Type::SelfChunk) => Ordering::Equal, (Type::SelfFunction, Type::SelfFunction) => Ordering::Equal,
(Type::SelfChunk, _) => Ordering::Greater, (Type::SelfFunction, _) => Ordering::Greater,
(Type::String, Type::String) => Ordering::Equal, (Type::String, Type::String) => Ordering::Equal,
(Type::String { .. }, _) => Ordering::Greater, (Type::String { .. }, _) => Ordering::Greater,
(Type::Struct(left_struct), Type::Struct(right_struct)) => { (Type::Struct(left_struct), Type::Struct(right_struct)) => {
@ -269,19 +273,33 @@ impl Ord for Type {
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)] #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct FunctionType { pub struct FunctionType {
pub type_parameters: Option<Vec<u16>>, pub type_parameters: Vec<u8>,
pub value_parameters: Option<Vec<(u16, Type)>>, pub value_parameters: Vec<(u8, Type)>,
pub return_type: Box<Type>, pub return_type: Type,
}
impl FunctionType {
pub fn new<T: Into<Vec<u8>>, U: Into<Vec<(u8, Type)>>>(
type_parameters: T,
value_parameters: U,
return_type: Type,
) -> Self {
FunctionType {
type_parameters: type_parameters.into(),
value_parameters: value_parameters.into(),
return_type,
}
}
} }
impl Display for FunctionType { impl Display for FunctionType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "fn ")?; write!(f, "fn ")?;
if let Some(type_parameters) = &self.type_parameters { if !self.type_parameters.is_empty() {
write!(f, "<")?; write!(f, "<")?;
for (index, type_parameter) in type_parameters.iter().enumerate() { for (index, type_parameter) in self.type_parameters.iter().enumerate() {
if index > 0 { if index > 0 {
write!(f, ", ")?; write!(f, ", ")?;
} }
@ -294,19 +312,19 @@ impl Display for FunctionType {
write!(f, "(")?; write!(f, "(")?;
if let Some(value_parameters) = &self.value_parameters { if !self.value_parameters.is_empty() {
for (index, (identifier, r#type)) in value_parameters.iter().enumerate() { for (index, (_, r#type)) in self.value_parameters.iter().enumerate() {
if index > 0 { if index > 0 {
write!(f, ", ")?; write!(f, ", ")?;
} }
write!(f, "{identifier}: {type}")?; write!(f, "{type}")?;
} }
} }
write!(f, ")")?; write!(f, ")")?;
if *self.return_type != Type::None { if self.return_type != Type::None {
write!(f, " -> {}", self.return_type)?; write!(f, " -> {}", self.return_type)?;
} }

View File

@ -0,0 +1,45 @@
use std::fmt::{self, Display, Formatter};
use crate::{vm::ThreadData, Pointer, Type};
use super::DustString;
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct AbstractList {
pub item_type: Type,
pub item_pointers: Vec<Pointer>,
}
impl AbstractList {
pub fn display(&self, data: &ThreadData) -> DustString {
let mut display = DustString::new();
display.push('[');
for (i, item) in self.item_pointers.iter().enumerate() {
if i > 0 {
display.push_str(", ");
}
let item_display = data.follow_pointer_unchecked(*item).display(data);
display.push_str(&item_display);
}
display.push(']');
display
}
}
impl Display for AbstractList {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "[")?;
for pointer in &self.item_pointers {
write!(f, "{}", pointer)?;
}
write!(f, "]")
}
}

View File

@ -1,93 +0,0 @@
use std::fmt::{self, Display, Formatter};
use crate::{vm::Pointer, ConcreteValue, Value, ValueRef, Vm, VmError};
#[derive(Debug, PartialEq, PartialOrd)]
pub enum AbstractValue {
FunctionSelf,
List { items: Vec<Pointer> },
}
impl AbstractValue {
pub fn to_value(self) -> Value {
Value::Abstract(self)
}
pub fn to_value_ref(&self) -> ValueRef {
ValueRef::Abstract(self)
}
pub fn to_concrete_owned(&self, vm: &Vm) -> Result<ConcreteValue, VmError> {
match self {
AbstractValue::FunctionSelf => Ok(ConcreteValue::Function(vm.chunk().clone())),
AbstractValue::List { items, .. } => {
let mut resolved_items = Vec::with_capacity(items.len());
for pointer in items {
let resolved_item = vm.follow_pointer(*pointer)?.to_concrete_owned(vm)?;
resolved_items.push(resolved_item);
}
Ok(ConcreteValue::List(resolved_items))
}
}
}
pub fn display(&self, vm: &Vm) -> Result<String, VmError> {
match self {
AbstractValue::FunctionSelf => Ok("self".to_string()),
AbstractValue::List { items, .. } => {
let mut display = "[".to_string();
for (i, item) in items.iter().enumerate() {
if i > 0 {
display.push_str(", ");
}
let item_display = vm.follow_pointer(*item)?.display(vm)?;
display.push_str(&item_display);
}
display.push(']');
Ok(display)
}
}
}
}
impl Clone for AbstractValue {
fn clone(&self) -> Self {
log::trace!("Cloning abstract value {:?}", self);
match self {
AbstractValue::FunctionSelf => AbstractValue::FunctionSelf,
AbstractValue::List { items } => AbstractValue::List {
items: items.clone(),
},
}
}
}
impl Display for AbstractValue {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
AbstractValue::FunctionSelf => write!(f, "self"),
AbstractValue::List { items, .. } => {
write!(f, "[")?;
for (i, item) in items.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{}", item)?;
}
write!(f, "]")
}
}
}
}

View File

@ -1,22 +1,25 @@
use std::fmt::{self, Display, Formatter}; use std::fmt::{self, Display, Formatter};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use smartstring::{LazyCompact, SmartString};
use tracing::trace;
use crate::{Chunk, Type, Value, ValueError, ValueRef}; use crate::{Type, Value, ValueError};
use super::RangeValue; use super::RangeValue;
pub type DustString = SmartString<LazyCompact>;
#[derive(Debug, PartialEq, PartialOrd, Serialize, Deserialize)] #[derive(Debug, PartialEq, PartialOrd, Serialize, Deserialize)]
pub enum ConcreteValue { pub enum ConcreteValue {
Boolean(bool), Boolean(bool),
Byte(u8), Byte(u8),
Character(char), Character(char),
Float(f64), Float(f64),
Function(Chunk),
Integer(i64), Integer(i64),
List(Vec<ConcreteValue>), List(Vec<ConcreteValue>),
Range(RangeValue), Range(RangeValue),
String(String), String(DustString),
} }
impl ConcreteValue { impl ConcreteValue {
@ -24,19 +27,15 @@ impl ConcreteValue {
Value::Concrete(self) Value::Concrete(self)
} }
pub fn to_value_ref(&self) -> ValueRef {
ValueRef::Concrete(self)
}
pub fn list<T: Into<Vec<ConcreteValue>>>(into_list: T) -> Self { pub fn list<T: Into<Vec<ConcreteValue>>>(into_list: T) -> Self {
ConcreteValue::List(into_list.into()) ConcreteValue::List(into_list.into())
} }
pub fn string<T: ToString>(to_string: T) -> Self { pub fn string<T: Into<SmartString<LazyCompact>>>(to_string: T) -> Self {
ConcreteValue::String(to_string.to_string()) ConcreteValue::String(to_string.into())
} }
pub fn as_string(&self) -> Option<&String> { pub fn as_string(&self) -> Option<&DustString> {
if let ConcreteValue::String(string) = self { if let ConcreteValue::String(string) = self {
Some(string) Some(string)
} else { } else {
@ -44,13 +43,16 @@ impl ConcreteValue {
} }
} }
pub fn display(&self) -> DustString {
DustString::from(self.to_string())
}
pub fn r#type(&self) -> Type { pub fn r#type(&self) -> Type {
match self { match self {
ConcreteValue::Boolean(_) => Type::Boolean, ConcreteValue::Boolean(_) => Type::Boolean,
ConcreteValue::Byte(_) => Type::Byte, ConcreteValue::Byte(_) => Type::Byte,
ConcreteValue::Character(_) => Type::Character, ConcreteValue::Character(_) => Type::Character,
ConcreteValue::Float(_) => Type::Float, ConcreteValue::Float(_) => Type::Float,
ConcreteValue::Function(chunk) => Type::Function(chunk.r#type().clone()),
ConcreteValue::Integer(_) => Type::Integer, ConcreteValue::Integer(_) => Type::Integer,
ConcreteValue::List(list) => { ConcreteValue::List(list) => {
let item_type = list.first().map_or(Type::Any, |item| item.r#type()); let item_type = list.first().map_or(Type::Any, |item| item.r#type());
@ -62,41 +64,76 @@ impl ConcreteValue {
} }
} }
pub fn add(&self, other: &Self) -> Result<ConcreteValue, ValueError> { pub fn add(&self, other: &Self) -> ConcreteValue {
use ConcreteValue::*; use ConcreteValue::*;
let sum = match (self, other) { match (self, other) {
(Byte(left), Byte(right)) => ConcreteValue::Byte(left.saturating_add(*right)), (Byte(left), Byte(right)) => {
(Float(left), Float(right)) => ConcreteValue::Float(*left + *right), let sum = left.saturating_add(*right);
(Integer(left), Integer(right)) => ConcreteValue::Integer(left.saturating_add(*right)),
(String(left), String(right)) => ConcreteValue::string(format!("{}{}", left, right)),
_ => {
return Err(ValueError::CannotAdd(
self.clone().to_value(),
other.clone().to_value(),
))
}
};
Ok(sum) Byte(sum)
}
(Character(left), Character(right)) => {
let mut concatenated = DustString::new();
concatenated.push(*left);
concatenated.push(*right);
String(concatenated)
}
(Character(left), String(right)) => {
let mut concatenated = DustString::new();
concatenated.push(*left);
concatenated.push_str(right);
String(concatenated)
}
(Float(left), Float(right)) => {
let sum = left + right;
Float(sum)
}
(Integer(left), Integer(right)) => {
let sum = left.saturating_add(*right);
Integer(sum)
}
(String(left), Character(right)) => {
let concatenated = format!("{}{}", left, right);
String(DustString::from(concatenated))
}
(String(left), String(right)) => {
let concatenated = format!("{}{}", left, right);
String(DustString::from(concatenated))
}
_ => panic!(
"{}",
ValueError::CannotAdd(
Value::Concrete(self.clone()),
Value::Concrete(other.clone())
)
),
}
} }
pub fn subtract(&self, other: &Self) -> Result<ConcreteValue, ValueError> { pub fn subtract(&self, other: &Self) -> ConcreteValue {
use ConcreteValue::*; use ConcreteValue::*;
let difference = match (self, other) { match (self, other) {
(Byte(left), Byte(right)) => ConcreteValue::Byte(left.saturating_sub(*right)), (Byte(left), Byte(right)) => ConcreteValue::Byte(left.saturating_sub(*right)),
(Float(left), Float(right)) => ConcreteValue::Float(left - right), (Float(left), Float(right)) => ConcreteValue::Float(left - right),
(Integer(left), Integer(right)) => ConcreteValue::Integer(left.saturating_sub(*right)), (Integer(left), Integer(right)) => ConcreteValue::Integer(left.saturating_sub(*right)),
_ => { _ => panic!(
return Err(ValueError::CannotSubtract( "{}",
self.clone().to_value(), ValueError::CannotSubtract(
other.clone().to_value(), Value::Concrete(self.clone()),
)) Value::Concrete(other.clone())
} )
}; ),
}
Ok(difference)
} }
pub fn multiply(&self, other: &Self) -> Result<ConcreteValue, ValueError> { pub fn multiply(&self, other: &Self) -> Result<ConcreteValue, ValueError> {
@ -155,18 +192,16 @@ impl ConcreteValue {
Ok(product) Ok(product)
} }
pub fn negate(&self) -> Result<ConcreteValue, ValueError> { pub fn negate(&self) -> ConcreteValue {
use ConcreteValue::*; use ConcreteValue::*;
let negated = match self { match self {
Boolean(value) => ConcreteValue::Boolean(!value), Boolean(value) => ConcreteValue::Boolean(!value),
Byte(value) => ConcreteValue::Byte(value.wrapping_neg()), Byte(value) => ConcreteValue::Byte(value.wrapping_neg()),
Float(value) => ConcreteValue::Float(-value), Float(value) => ConcreteValue::Float(-value),
Integer(value) => ConcreteValue::Integer(value.wrapping_neg()), Integer(value) => ConcreteValue::Integer(value.wrapping_neg()),
_ => return Err(ValueError::CannotNegate(self.clone().to_value())), _ => panic!("{}", ValueError::CannotNegate(self.clone().to_value())),
}; }
Ok(negated)
} }
pub fn not(&self) -> Result<ConcreteValue, ValueError> { pub fn not(&self) -> Result<ConcreteValue, ValueError> {
@ -180,28 +215,28 @@ impl ConcreteValue {
Ok(not) Ok(not)
} }
pub fn equal(&self, other: &ConcreteValue) -> Result<ConcreteValue, ValueError> { pub fn equals(&self, other: &ConcreteValue) -> bool {
use ConcreteValue::*; use ConcreteValue::*;
let equal = match (self, other) { match (self, other) {
(Boolean(left), Boolean(right)) => ConcreteValue::Boolean(left == right), (Boolean(left), Boolean(right)) => left == right,
(Byte(left), Byte(right)) => ConcreteValue::Boolean(left == right), (Byte(left), Byte(right)) => left == right,
(Character(left), Character(right)) => ConcreteValue::Boolean(left == right), (Character(left), Character(right)) => left == right,
(Float(left), Float(right)) => ConcreteValue::Boolean(left == right), (Float(left), Float(right)) => left == right,
(Function(left), Function(right)) => ConcreteValue::Boolean(left == right), (Integer(left), Integer(right)) => left == right,
(Integer(left), Integer(right)) => ConcreteValue::Boolean(left == right), (List(left), List(right)) => left == right,
(List(left), List(right)) => ConcreteValue::Boolean(left == right), (Range(left), Range(right)) => left == right,
(Range(left), Range(right)) => ConcreteValue::Boolean(left == right), (String(left), String(right)) => left == right,
(String(left), String(right)) => ConcreteValue::Boolean(left == right),
_ => { _ => {
return Err(ValueError::CannotCompare( panic!(
self.clone().to_value(), "{}",
other.clone().to_value(), ValueError::CannotCompare(
)) Value::Concrete(self.clone()),
Value::Concrete(other.clone())
)
)
} }
}; }
Ok(equal)
} }
pub fn less_than(&self, other: &ConcreteValue) -> Result<ConcreteValue, ValueError> { pub fn less_than(&self, other: &ConcreteValue) -> Result<ConcreteValue, ValueError> {
@ -212,7 +247,6 @@ impl ConcreteValue {
(Byte(left), Byte(right)) => ConcreteValue::Boolean(left < right), (Byte(left), Byte(right)) => ConcreteValue::Boolean(left < right),
(Character(left), Character(right)) => ConcreteValue::Boolean(left < right), (Character(left), Character(right)) => ConcreteValue::Boolean(left < right),
(Float(left), Float(right)) => ConcreteValue::Boolean(left < right), (Float(left), Float(right)) => ConcreteValue::Boolean(left < right),
(Function(left), Function(right)) => ConcreteValue::Boolean(left < right),
(Integer(left), Integer(right)) => ConcreteValue::Boolean(left < right), (Integer(left), Integer(right)) => ConcreteValue::Boolean(left < right),
(List(left), List(right)) => ConcreteValue::Boolean(left < right), (List(left), List(right)) => ConcreteValue::Boolean(left < right),
(Range(left), Range(right)) => ConcreteValue::Boolean(left < right), (Range(left), Range(right)) => ConcreteValue::Boolean(left < right),
@ -228,7 +262,7 @@ impl ConcreteValue {
Ok(less_than) Ok(less_than)
} }
pub fn less_than_or_equal(&self, other: &ConcreteValue) -> Result<ConcreteValue, ValueError> { pub fn less_than_or_equals(&self, other: &ConcreteValue) -> Result<ConcreteValue, ValueError> {
use ConcreteValue::*; use ConcreteValue::*;
let less_than_or_equal = match (self, other) { let less_than_or_equal = match (self, other) {
@ -236,7 +270,6 @@ impl ConcreteValue {
(Byte(left), Byte(right)) => ConcreteValue::Boolean(left <= right), (Byte(left), Byte(right)) => ConcreteValue::Boolean(left <= right),
(Character(left), Character(right)) => ConcreteValue::Boolean(left <= right), (Character(left), Character(right)) => ConcreteValue::Boolean(left <= right),
(Float(left), Float(right)) => ConcreteValue::Boolean(left <= right), (Float(left), Float(right)) => ConcreteValue::Boolean(left <= right),
(Function(left), Function(right)) => ConcreteValue::Boolean(left <= right),
(Integer(left), Integer(right)) => ConcreteValue::Boolean(left <= right), (Integer(left), Integer(right)) => ConcreteValue::Boolean(left <= right),
(List(left), List(right)) => ConcreteValue::Boolean(left <= right), (List(left), List(right)) => ConcreteValue::Boolean(left <= right),
(Range(left), Range(right)) => ConcreteValue::Boolean(left <= right), (Range(left), Range(right)) => ConcreteValue::Boolean(left <= right),
@ -255,14 +288,13 @@ impl ConcreteValue {
impl Clone for ConcreteValue { impl Clone for ConcreteValue {
fn clone(&self) -> Self { fn clone(&self) -> Self {
log::trace!("Cloning concrete value {}", self); trace!("Cloning concrete value {}", self);
match self { match self {
ConcreteValue::Boolean(boolean) => ConcreteValue::Boolean(*boolean), ConcreteValue::Boolean(boolean) => ConcreteValue::Boolean(*boolean),
ConcreteValue::Byte(byte) => ConcreteValue::Byte(*byte), ConcreteValue::Byte(byte) => ConcreteValue::Byte(*byte),
ConcreteValue::Character(character) => ConcreteValue::Character(*character), ConcreteValue::Character(character) => ConcreteValue::Character(*character),
ConcreteValue::Float(float) => ConcreteValue::Float(*float), ConcreteValue::Float(float) => ConcreteValue::Float(*float),
ConcreteValue::Function(function) => ConcreteValue::Function(function.clone()),
ConcreteValue::Integer(integer) => ConcreteValue::Integer(*integer), ConcreteValue::Integer(integer) => ConcreteValue::Integer(*integer),
ConcreteValue::List(list) => ConcreteValue::List(list.clone()), ConcreteValue::List(list) => ConcreteValue::List(list.clone()),
ConcreteValue::Range(range) => ConcreteValue::Range(*range), ConcreteValue::Range(range) => ConcreteValue::Range(*range),
@ -286,7 +318,6 @@ impl Display for ConcreteValue {
Ok(()) Ok(())
} }
ConcreteValue::Function(chunk) => write!(f, "{}", chunk.r#type()),
ConcreteValue::Integer(integer) => write!(f, "{integer}"), ConcreteValue::Integer(integer) => write!(f, "{integer}"),
ConcreteValue::List(list) => { ConcreteValue::List(list) => {
write!(f, "[")?; write!(f, "[")?;

View File

@ -0,0 +1,26 @@
use std::fmt::{self, Display, Formatter};
use crate::FunctionType;
use super::DustString;
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct Function {
pub name: Option<DustString>,
pub r#type: FunctionType,
pub prototype_index: u8,
}
impl Display for Function {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let mut type_string = self.r#type.to_string();
if let Some(name) = &self.name {
debug_assert!(type_string.starts_with("fn "));
type_string.insert_str(3, name);
}
write!(f, "{type_string}")
}
}

View File

@ -1,107 +1,114 @@
//! Runtime values used by the VM. //! Runtime values used by the VM.
mod abstract_value; mod abstract_list;
mod concrete_value; mod concrete_value;
mod function;
mod range_value; mod range_value;
pub use abstract_value::AbstractValue; pub use abstract_list::AbstractList;
pub use concrete_value::ConcreteValue; pub use concrete_value::{ConcreteValue, DustString};
pub use function::Function;
pub use range_value::RangeValue; pub use range_value::RangeValue;
use serde::{Deserialize, Serialize};
use std::fmt::{self, Debug, Display, Formatter}; use std::fmt::{self, Debug, Display, Formatter};
use crate::{Vm, VmError}; use crate::{vm::ThreadData, Type};
#[derive(Clone, Debug, PartialEq, PartialOrd)] #[derive(Clone, Debug, PartialEq, PartialOrd, Serialize, Deserialize)]
pub enum Value { pub enum Value {
Abstract(AbstractValue),
Concrete(ConcreteValue), Concrete(ConcreteValue),
#[serde(skip)]
AbstractList(AbstractList),
#[serde(skip)]
Function(Function),
} }
impl Value { impl Value {
pub fn to_ref(&self) -> ValueRef { pub fn boolean(boolean: bool) -> Self {
match self { Value::Concrete(ConcreteValue::Boolean(boolean))
Value::Abstract(abstract_value) => ValueRef::Abstract(abstract_value), }
Value::Concrete(concrete_value) => ValueRef::Concrete(concrete_value),
pub fn byte(byte: u8) -> Self {
Value::Concrete(ConcreteValue::Byte(byte))
}
pub fn character(character: char) -> Self {
Value::Concrete(ConcreteValue::Character(character))
}
pub fn float(float: f64) -> Self {
Value::Concrete(ConcreteValue::Float(float))
}
pub fn integer(integer: i64) -> Self {
Value::Concrete(ConcreteValue::Integer(integer))
}
pub fn string(string: impl Into<DustString>) -> Self {
Value::Concrete(ConcreteValue::String(string.into()))
}
pub fn as_boolean(&self) -> Option<&bool> {
if let Value::Concrete(ConcreteValue::Boolean(value)) = self {
Some(value)
} else {
None
} }
} }
pub fn to_concrete_owned(&self, vm: &Vm) -> Result<ConcreteValue, VmError> { pub fn as_function(&self) -> Option<&Function> {
match self { if let Value::Function(function) = self {
Value::Abstract(abstract_value) => abstract_value.to_concrete_owned(vm), Some(function)
Value::Concrete(concrete_value) => Ok(concrete_value.clone()), } else {
None
} }
} }
pub fn display(&self, vm: &Vm) -> Result<String, VmError> { pub fn as_string(&self) -> Option<&DustString> {
match self { if let Value::Concrete(ConcreteValue::String(value)) = self {
Value::Abstract(abstract_value) => abstract_value.display(vm), Some(value)
Value::Concrete(concrete_value) => Ok(concrete_value.to_string()), } else {
} None
}
}
impl Display for Value {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Value::Abstract(abstract_value) => write!(f, "{}", abstract_value),
Value::Concrete(concrete_value) => write!(f, "{}", concrete_value),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub enum ValueRef<'a> {
Abstract(&'a AbstractValue),
Concrete(&'a ConcreteValue),
}
impl ValueRef<'_> {
pub fn to_owned(&self) -> Value {
match self {
ValueRef::Abstract(abstract_value) => Value::Abstract((*abstract_value).clone()),
ValueRef::Concrete(concrete_value) => Value::Concrete((*concrete_value).clone()),
} }
} }
pub fn to_concrete_owned(&self, vm: &Vm) -> Result<ConcreteValue, VmError> { pub fn r#type(&self) -> Type {
match self { match self {
ValueRef::Abstract(abstract_value) => abstract_value.to_concrete_owned(vm), Value::Concrete(concrete_value) => concrete_value.r#type(),
ValueRef::Concrete(concrete_value) => Ok((*concrete_value).clone()), Value::AbstractList(AbstractList { item_type, .. }) => {
} Type::List(Box::new(item_type.clone()))
}
pub fn display(&self, vm: &Vm) -> Result<String, VmError> {
match self {
ValueRef::Abstract(abstract_value) => abstract_value.display(vm),
ValueRef::Concrete(concrete_value) => Ok(concrete_value.to_string()),
}
}
pub fn add(&self, other: ValueRef) -> Result<Value, ValueError> {
match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => {
left.add(right).map(|result| result.to_value())
} }
_ => Err(ValueError::CannotAdd(self.to_owned(), other.to_owned())), Value::Function(Function { r#type, .. }) => Type::Function(Box::new(r#type.clone())),
} }
} }
pub fn subtract(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn add(&self, other: &Value) -> Value {
match (self, other) { let sum = match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => left.add(right),
left.subtract(right).map(|result| result.to_value()) _ => panic!("{}", ValueError::CannotAdd(self.clone(), other.clone())),
} };
_ => Err(ValueError::CannotSubtract(
self.to_owned(), Value::Concrete(sum)
other.to_owned(),
)),
}
} }
pub fn multiply(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn subtract(&self, other: &Value) -> Value {
let difference = match (self, other) {
(Value::Concrete(left), Value::Concrete(right)) => left.subtract(right),
_ => panic!(
"{}",
ValueError::CannotSubtract(self.clone(), other.clone())
),
};
Value::Concrete(difference)
}
pub fn multiply(&self, other: &Value) -> Result<Value, ValueError> {
match (self, other) { match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => {
left.multiply(right).map(|result| result.to_value()) left.multiply(right).map(Value::Concrete)
} }
_ => Err(ValueError::CannotMultiply( _ => Err(ValueError::CannotMultiply(
self.to_owned(), self.to_owned(),
@ -110,75 +117,83 @@ impl ValueRef<'_> {
} }
} }
pub fn divide(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn divide(&self, other: &Value) -> Result<Value, ValueError> {
match (self, other) { match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => {
left.divide(right).map(|result| result.to_value()) left.divide(right).map(Value::Concrete)
} }
_ => Err(ValueError::CannotDivide(self.to_owned(), other.to_owned())), _ => Err(ValueError::CannotDivide(self.to_owned(), other.to_owned())),
} }
} }
pub fn modulo(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn modulo(&self, other: &Value) -> Result<Value, ValueError> {
match (self, other) { match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => {
left.modulo(right).map(|result| result.to_value()) left.modulo(right).map(Value::Concrete)
} }
_ => Err(ValueError::CannotModulo(self.to_owned(), other.to_owned())), _ => Err(ValueError::CannotModulo(self.to_owned(), other.to_owned())),
} }
} }
pub fn negate(&self) -> Result<Value, ValueError> { pub fn negate(&self) -> Value {
match self { let concrete = match self {
ValueRef::Concrete(concrete_value) => { Value::Concrete(concrete_value) => concrete_value.negate(),
concrete_value.negate().map(|result| result.to_value()) _ => panic!("{}", ValueError::CannotNegate(self.clone())),
} };
_ => Err(ValueError::CannotNegate(self.to_owned())),
} Value::Concrete(concrete)
} }
pub fn not(&self) -> Result<Value, ValueError> { pub fn not(&self) -> Result<Value, ValueError> {
match self { match self {
ValueRef::Concrete(concrete_value) => { Value::Concrete(concrete_value) => concrete_value.not().map(Value::Concrete),
concrete_value.not().map(|result| result.to_value())
}
_ => Err(ValueError::CannotNot(self.to_owned())), _ => Err(ValueError::CannotNot(self.to_owned())),
} }
} }
pub fn equal(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn equals(&self, other: &Value) -> bool {
match (self, other) { match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => left.equals(right),
left.equal(right).map(|result| result.to_value()) _ => panic!(
"{}",
ValueError::CannotCompare(self.to_owned(), other.to_owned())
),
}
}
pub fn less(&self, other: &Value) -> Result<Value, ValueError> {
match (self, other) {
(Value::Concrete(left), Value::Concrete(right)) => {
left.less_than(right).map(Value::Concrete)
} }
_ => Err(ValueError::CannotCompare(self.to_owned(), other.to_owned())), _ => Err(ValueError::CannotCompare(self.to_owned(), other.to_owned())),
} }
} }
pub fn less_than(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn less_than_or_equals(&self, other: &Value) -> Result<Value, ValueError> {
match (self, other) { match (self, other) {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => { (Value::Concrete(left), Value::Concrete(right)) => {
left.less_than(right).map(|result| result.to_value()) left.less_than_or_equals(right).map(Value::Concrete)
} }
_ => Err(ValueError::CannotCompare(self.to_owned(), other.to_owned())), _ => Err(ValueError::CannotCompare(self.to_owned(), other.to_owned())),
} }
} }
pub fn less_than_or_equal(&self, other: ValueRef) -> Result<Value, ValueError> { pub fn display(&self, data: &ThreadData) -> DustString {
match (self, other) { match self {
(ValueRef::Concrete(left), ValueRef::Concrete(right)) => left Value::AbstractList(list) => list.display(data),
.less_than_or_equal(right) Value::Concrete(concrete_value) => concrete_value.display(),
.map(|result| result.to_value()), Value::Function(function) => DustString::from(function.to_string()),
_ => Err(ValueError::CannotCompare(self.to_owned(), other.to_owned())),
} }
} }
} }
impl Display for ValueRef<'_> { impl Display for Value {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self { match self {
ValueRef::Abstract(abstract_value) => write!(f, "{}", abstract_value), Value::Concrete(concrete_value) => write!(f, "{concrete_value}"),
ValueRef::Concrete(concrete_value) => write!(f, "{}", concrete_value), Value::AbstractList(list) => write!(f, "{list}"),
Value::Function(function) => write!(f, "{function}"),
} }
} }
} }

View File

@ -1,903 +0,0 @@
//! Virtual machine and errors
use std::{
cmp::Ordering,
fmt::{self, Display, Formatter},
io,
};
use crate::{
compile, instruction::*, AbstractValue, AnnotatedError, Argument, Chunk, ConcreteValue,
Destination, DustError, Instruction, NativeFunctionError, Operation, Span, Value, ValueError,
ValueRef,
};
pub fn run(source: &str) -> Result<Option<ConcreteValue>, DustError> {
let chunk = compile(source)?;
let mut vm = Vm::new(&chunk, None);
vm.run()
.map_err(|error| DustError::Runtime { error, source })
}
/// Dust virtual machine.
///
/// See the [module-level documentation](index.html) for more information.
#[derive(Debug)]
pub struct Vm<'a> {
chunk: &'a Chunk,
stack: Vec<Register>,
parent: Option<&'a Vm<'a>>,
local_definitions: Vec<Option<u16>>,
ip: usize,
last_assigned_register: Option<u16>,
current_position: Span,
}
impl<'a> Vm<'a> {
const STACK_LIMIT: usize = u16::MAX as usize;
pub fn new(chunk: &'a Chunk, parent: Option<&'a Vm<'a>>) -> Self {
Self {
chunk,
stack: Vec::new(),
parent,
local_definitions: vec![None; chunk.locals().len()],
ip: 0,
last_assigned_register: None,
current_position: Span(0, 0),
}
}
pub fn chunk(&self) -> &Chunk {
self.chunk
}
pub fn current_position(&self) -> Span {
self.current_position
}
pub fn run(&mut self) -> Result<Option<ConcreteValue>, VmError> {
while let Ok(instruction) = self.read() {
log::info!(
"{} | {} | {} | {}",
self.ip - 1,
self.current_position,
instruction.operation(),
instruction.disassembly_info()
);
match instruction.operation() {
Operation::Move => {
let Move { from, to } = Move::from(&instruction);
let from_register_has_value = self
.stack
.get(from as usize)
.is_some_and(|register| !matches!(register, Register::Empty));
let register = Register::Pointer(Pointer::Stack(from));
if from_register_has_value {
self.set_register(to, register)?;
}
}
Operation::Close => {
let Close { from, to } = Close::from(&instruction);
if self.stack.len() < to as usize {
return Err(VmError::StackUnderflow {
position: self.current_position,
});
}
for register_index in from..to {
self.stack[register_index as usize] = Register::Empty;
}
}
Operation::LoadBoolean => {
let LoadBoolean {
destination,
value,
jump_next,
} = LoadBoolean::from(&instruction);
let register_index = self.get_destination(destination)?;
let boolean = ConcreteValue::Boolean(value).to_value();
let register = Register::Value(boolean);
self.set_register(register_index, register)?;
if jump_next {
self.jump(1, true);
}
}
Operation::LoadConstant => {
let LoadConstant {
destination,
constant_index,
jump_next,
} = LoadConstant::from(&instruction);
let register_index = self.get_destination(destination)?;
let register = Register::Pointer(Pointer::Constant(constant_index));
self.set_register(register_index, register)?;
if jump_next {
self.jump(1, true);
}
}
Operation::LoadList => {
let LoadList {
destination,
start_register,
} = LoadList::from(&instruction);
let register_index = self.get_destination(destination)?;
let mut pointers = Vec::new();
for register in start_register..register_index {
if let Some(Register::Empty) = self.stack.get(register as usize) {
continue;
}
let pointer = Pointer::Stack(register);
pointers.push(pointer);
}
let register =
Register::Value(AbstractValue::List { items: pointers }.to_value());
self.set_register(register_index, register)?;
}
Operation::LoadSelf => {
let LoadSelf { destination } = LoadSelf::from(&instruction);
let register_index = self.get_destination(destination)?;
let register = Register::Value(AbstractValue::FunctionSelf.to_value());
self.set_register(register_index, register)?;
}
Operation::DefineLocal => {
let DefineLocal {
register,
local_index,
is_mutable,
} = DefineLocal::from(&instruction);
self.local_definitions[local_index as usize] = Some(register);
}
Operation::GetLocal => {
let GetLocal {
destination,
local_index,
} = GetLocal::from(&instruction);
let register_index = self.get_destination(destination)?;
let local_register = self.local_definitions[local_index as usize].ok_or(
VmError::UndefinedLocal {
local_index,
position: self.current_position,
},
)?;
let register = Register::Pointer(Pointer::Stack(local_register));
self.set_register(register_index, register)?;
}
Operation::SetLocal => {
let SetLocal {
register,
local_index,
} = SetLocal::from(&instruction);
self.local_definitions[local_index as usize] = Some(register);
}
Operation::Add => {
let Add {
destination,
left,
right,
} = Add::from(&instruction);
let register_index = self.get_destination(destination)?;
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let sum = left.add(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
self.set_register(register_index, Register::Value(sum))?;
}
Operation::Subtract => {
let Subtract {
destination,
left,
right,
} = Subtract::from(&instruction);
let register_index = self.get_destination(destination)?;
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let difference = left.subtract(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
self.set_register(register_index, Register::Value(difference))?;
}
Operation::Multiply => {
let Multiply {
destination,
left,
right,
} = Multiply::from(&instruction);
let register_index = self.get_destination(destination)?;
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let product = left.multiply(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
self.set_register(register_index, Register::Value(product))?;
}
Operation::Divide => {
let Divide {
destination,
left,
right,
} = Divide::from(&instruction);
let register_index = self.get_destination(destination)?;
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let quotient = left.divide(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
self.set_register(register_index, Register::Value(quotient))?;
}
Operation::Modulo => {
let Modulo {
destination,
left,
right,
} = Modulo::from(&instruction);
let register_index = self.get_destination(destination)?;
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let remainder = left.modulo(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
self.set_register(register_index, Register::Value(remainder))?;
}
Operation::Test => {
let Test {
argument,
test_value,
} = Test::from(&instruction);
let value = self.get_argument(argument)?;
let boolean = if let ValueRef::Concrete(ConcreteValue::Boolean(boolean)) = value
{
*boolean
} else {
return Err(VmError::ExpectedBoolean {
found: value.to_owned(),
position: self.current_position,
});
};
if boolean == test_value {
self.jump(1, true);
}
}
Operation::TestSet => {
let TestSet {
destination,
argument,
test_value,
} = TestSet::from(&instruction);
let register_index = self.get_destination(destination)?;
let value = self.get_argument(argument)?;
let boolean = if let ValueRef::Concrete(ConcreteValue::Boolean(boolean)) = value
{
*boolean
} else {
return Err(VmError::ExpectedBoolean {
found: value.to_owned(),
position: self.current_position,
});
};
if boolean == test_value {
self.jump(1, true);
} else {
let pointer = match argument {
Argument::Constant(constant_index) => Pointer::Constant(constant_index),
Argument::Local(local_index) => {
let register_index = self.local_definitions[local_index as usize]
.ok_or(VmError::UndefinedLocal {
local_index,
position: self.current_position,
})?;
Pointer::Stack(register_index)
}
Argument::Register(register_index) => Pointer::Stack(register_index),
};
let register = Register::Pointer(pointer);
self.set_register(register_index, register)?;
}
}
Operation::Equal => {
let Equal { value, left, right } = Equal::from(&instruction);
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let equal_result = left.equal(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
let is_equal =
if let Value::Concrete(ConcreteValue::Boolean(boolean)) = equal_result {
boolean
} else {
return Err(VmError::ExpectedBoolean {
found: equal_result,
position: self.current_position,
});
};
if is_equal == value {
self.jump(1, true);
}
}
Operation::Less => {
let Less { value, left, right } = Less::from(&instruction);
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let less_result = left.less_than(right).map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
let is_less_than =
if let Value::Concrete(ConcreteValue::Boolean(boolean)) = less_result {
boolean
} else {
return Err(VmError::ExpectedBoolean {
found: less_result,
position: self.current_position,
});
};
if is_less_than == value {
self.jump(1, true);
}
}
Operation::LessEqual => {
let LessEqual { value, left, right } = LessEqual::from(&instruction);
let left = self.get_argument(left)?;
let right = self.get_argument(right)?;
let less_or_equal_result =
left.less_than_or_equal(right)
.map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
let is_less_than_or_equal =
if let Value::Concrete(ConcreteValue::Boolean(boolean)) =
less_or_equal_result
{
boolean
} else {
return Err(VmError::ExpectedBoolean {
found: less_or_equal_result,
position: self.current_position,
});
};
if is_less_than_or_equal == value {
self.jump(1, true);
}
}
Operation::Negate => {
let Negate {
destination,
argument,
} = Negate::from(&instruction);
let value = self.get_argument(argument)?;
let negated = value.negate().map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
let register_index = self.get_destination(destination)?;
let register = Register::Value(negated);
self.set_register(register_index, register)?;
}
Operation::Not => {
let Not {
destination,
argument,
} = Not::from(&instruction);
let value = self.get_argument(argument)?;
let not = value.not().map_err(|error| VmError::Value {
error,
position: self.current_position,
})?;
let register_index = self.get_destination(destination)?;
let register = Register::Value(not);
self.set_register(register_index, register)?;
}
Operation::Jump => {
let Jump {
offset,
is_positive,
} = Jump::from(&instruction);
self.jump(offset as usize, is_positive);
}
Operation::Call => {
let Call {
destination,
function,
argument_count,
} = Call::from(&instruction);
let register_index = self.get_destination(destination)?;
let function = self.get_argument(function)?;
let chunk = if let ValueRef::Concrete(ConcreteValue::Function(chunk)) = function
{
chunk
} else if let ValueRef::Abstract(AbstractValue::FunctionSelf) = function {
self.chunk
} else {
return Err(VmError::ExpectedFunction {
found: function.to_concrete_owned(self)?,
position: self.current_position,
});
};
let mut function_vm = Vm::new(chunk, Some(self));
let first_argument_index = register_index - argument_count;
for (argument_index, argument_register_index) in
(first_argument_index..register_index).enumerate()
{
function_vm.set_register(
argument_index as u16,
Register::Pointer(Pointer::ParentStack(argument_register_index)),
)?;
function_vm.local_definitions[argument_index] = Some(argument_index as u16);
}
let return_value = function_vm.run()?;
if let Some(concrete_value) = return_value {
let register = Register::Value(concrete_value.to_value());
self.set_register(register_index, register)?;
}
}
Operation::CallNative => {
let CallNative {
destination,
function,
argument_count,
} = CallNative::from(&instruction);
let return_value = function.call(self, instruction)?;
if let Some(value) = return_value {
let register_index = self.get_destination(destination)?;
let register = Register::Value(value);
self.set_register(register_index, register)?;
}
}
Operation::Return => {
let Return {
should_return_value,
} = Return::from(&instruction);
if !should_return_value {
return Ok(None);
}
return if let Some(register_index) = self.last_assigned_register {
let return_value = self
.open_register(register_index)?
.to_concrete_owned(self)?;
Ok(Some(return_value))
} else {
Err(VmError::StackUnderflow {
position: self.current_position,
})
};
}
}
}
Ok(None)
}
pub(crate) fn follow_pointer(&self, pointer: Pointer) -> Result<ValueRef, VmError> {
match pointer {
Pointer::Stack(register_index) => self.open_register(register_index),
Pointer::Constant(constant_index) => {
let constant = self.get_constant(constant_index)?;
Ok(ValueRef::Concrete(constant))
}
Pointer::ParentStack(register_index) => {
let parent = self
.parent
.as_ref()
.ok_or_else(|| VmError::ExpectedParent {
position: self.current_position,
})?;
parent.open_register(register_index)
}
Pointer::ParentConstant(constant_index) => {
let parent = self
.parent
.as_ref()
.ok_or_else(|| VmError::ExpectedParent {
position: self.current_position,
})?;
let constant = parent.get_constant(constant_index)?;
Ok(ValueRef::Concrete(constant))
}
}
}
fn open_register(&self, register_index: u16) -> Result<ValueRef, VmError> {
let register_index = register_index as usize;
let register =
self.stack
.get(register_index)
.ok_or_else(|| VmError::RegisterIndexOutOfBounds {
index: register_index,
position: self.current_position,
})?;
log::trace!("Open R{register_index} to {register}");
match register {
Register::Value(value) => Ok(value.to_ref()),
Register::Pointer(pointer) => self.follow_pointer(*pointer),
Register::Empty => Err(VmError::EmptyRegister {
index: register_index,
position: self.current_position,
}),
}
}
pub(crate) fn open_register_allow_empty(
&self,
register_index: u16,
) -> Result<Option<ValueRef>, VmError> {
let register_index = register_index as usize;
let register =
self.stack
.get(register_index)
.ok_or_else(|| VmError::RegisterIndexOutOfBounds {
index: register_index,
position: self.current_position,
})?;
log::trace!("Open R{register_index} to {register}");
match register {
Register::Value(value) => Ok(Some(value.to_ref())),
Register::Pointer(pointer) => self.follow_pointer(*pointer).map(Some),
Register::Empty => Ok(None),
}
}
/// DRY helper for handling JUMP instructions
fn jump(&mut self, offset: usize, is_positive: bool) {
log::trace!(
"Jumping {}",
if is_positive {
format!("+{}", offset)
} else {
format!("-{}", offset)
}
);
let new_ip = if is_positive {
self.ip + offset
} else {
self.ip - offset - 1
};
self.ip = new_ip;
}
/// DRY helper to get a register index from a Destination
fn get_destination(&self, destination: Destination) -> Result<u16, VmError> {
let index = match destination {
Destination::Register(register_index) => register_index,
Destination::Local(local_index) => self
.local_definitions
.get(local_index as usize)
.copied()
.flatten()
.ok_or_else(|| VmError::UndefinedLocal {
local_index,
position: self.current_position,
})?,
};
Ok(index)
}
/// DRY helper to get a value from an Argument
fn get_argument(&self, argument: Argument) -> Result<ValueRef, VmError> {
let value_ref = match argument {
Argument::Constant(constant_index) => {
ValueRef::Concrete(self.get_constant(constant_index)?)
}
Argument::Register(register_index) => self.open_register(register_index)?,
Argument::Local(local_index) => self.get_local(local_index)?,
};
Ok(value_ref)
}
fn set_register(&mut self, to_register: u16, register: Register) -> Result<(), VmError> {
self.last_assigned_register = Some(to_register);
let length = self.stack.len();
let to_register = to_register as usize;
if length == Self::STACK_LIMIT {
return Err(VmError::StackOverflow {
position: self.current_position,
});
}
match to_register.cmp(&length) {
Ordering::Less => {
log::trace!("Change R{to_register} to {register}");
self.stack[to_register] = register;
Ok(())
}
Ordering::Equal => {
log::trace!("Set R{to_register} to {register}");
self.stack.push(register);
Ok(())
}
Ordering::Greater => {
let difference = to_register - length;
for index in 0..difference {
log::trace!("Set R{index} to {register}");
self.stack.push(Register::Empty);
}
log::trace!("Set R{to_register} to {register}");
self.stack.push(register);
Ok(())
}
}
}
fn get_constant(&self, constant_index: u16) -> Result<&ConcreteValue, VmError> {
self.chunk
.constants()
.get(constant_index as usize)
.ok_or_else(|| VmError::ConstantIndexOutOfBounds {
index: constant_index as usize,
position: self.current_position,
})
}
fn get_local(&self, local_index: u16) -> Result<ValueRef, VmError> {
let register_index = self
.local_definitions
.get(local_index as usize)
.ok_or_else(|| VmError::UndefinedLocal {
local_index,
position: self.current_position,
})?
.ok_or_else(|| VmError::UndefinedLocal {
local_index,
position: self.current_position,
})?;
self.open_register(register_index)
}
fn read(&mut self) -> Result<Instruction, VmError> {
let (instruction, _type, position) =
self.chunk.instructions().get(self.ip).ok_or_else(|| {
VmError::InstructionIndexOutOfBounds {
index: self.ip,
position: self.current_position,
}
})?;
self.ip += 1;
self.current_position = *position;
Ok(*instruction)
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Register {
Empty,
Value(Value),
Pointer(Pointer),
}
impl Display for Register {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Empty => write!(f, "empty"),
Self::Value(value) => write!(f, "{}", value),
Self::Pointer(pointer) => write!(f, "{}", pointer),
}
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub enum Pointer {
Stack(u16),
Constant(u16),
ParentStack(u16),
ParentConstant(u16),
}
impl Display for Pointer {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Stack(index) => write!(f, "R{}", index),
Self::Constant(index) => write!(f, "C{}", index),
Self::ParentStack(index) => write!(f, "PR{}", index),
Self::ParentConstant(index) => write!(f, "PC{}", index),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum VmError {
// Stack errors
StackOverflow {
position: Span,
},
StackUnderflow {
position: Span,
},
// Register errors
EmptyRegister {
index: usize,
position: Span,
},
ExpectedConcreteValue {
found: AbstractValue,
position: Span,
},
ExpectedValue {
found: Register,
position: Span,
},
RegisterIndexOutOfBounds {
index: usize,
position: Span,
},
// Local errors
UndefinedLocal {
local_index: u16,
position: Span,
},
// Execution errors
ExpectedBoolean {
found: Value,
position: Span,
},
ExpectedFunction {
found: ConcreteValue,
position: Span,
},
ExpectedParent {
position: Span,
},
ValueDisplay {
error: io::ErrorKind,
position: Span,
},
// Chunk errors
ConstantIndexOutOfBounds {
index: usize,
position: Span,
},
InstructionIndexOutOfBounds {
index: usize,
position: Span,
},
LocalIndexOutOfBounds {
index: usize,
position: Span,
},
// Wrappers for foreign errors
NativeFunction(NativeFunctionError),
Value {
error: ValueError,
position: Span,
},
}
impl AnnotatedError for VmError {
fn title() -> &'static str {
"Runtime Error"
}
fn description(&self) -> &'static str {
match self {
Self::ConstantIndexOutOfBounds { .. } => "Constant index out of bounds",
Self::EmptyRegister { .. } => "Empty register",
Self::ExpectedBoolean { .. } => "Expected boolean",
Self::ExpectedConcreteValue { .. } => "Expected concrete value",
Self::ExpectedFunction { .. } => "Expected function",
Self::ExpectedParent { .. } => "Expected parent",
Self::ExpectedValue { .. } => "Expected value",
Self::InstructionIndexOutOfBounds { .. } => "Instruction index out of bounds",
Self::LocalIndexOutOfBounds { .. } => "Local index out of bounds",
Self::NativeFunction(error) => error.description(),
Self::RegisterIndexOutOfBounds { .. } => "Register index out of bounds",
Self::StackOverflow { .. } => "Stack overflow",
Self::StackUnderflow { .. } => "Stack underflow",
Self::UndefinedLocal { .. } => "Undefined local",
Self::Value { .. } => "Value error",
Self::ValueDisplay { .. } => "Value display error",
}
}
fn details(&self) -> Option<String> {
match self {
Self::EmptyRegister { index, .. } => Some(format!("Register R{index} is empty")),
Self::ExpectedFunction { found, .. } => Some(format!("{found} is not a function")),
Self::RegisterIndexOutOfBounds { index, .. } => {
Some(format!("Register {index} does not exist"))
}
Self::NativeFunction(error) => error.details(),
Self::Value { error, .. } => Some(error.to_string()),
Self::ValueDisplay { error, .. } => Some(error.to_string() + " while displaying value"),
_ => None,
}
}
fn position(&self) -> Span {
match self {
Self::ConstantIndexOutOfBounds { position, .. } => *position,
Self::EmptyRegister { position, .. } => *position,
Self::ExpectedBoolean { position, .. } => *position,
Self::ExpectedConcreteValue { position, .. } => *position,
Self::ExpectedFunction { position, .. } => *position,
Self::ExpectedParent { position } => *position,
Self::ExpectedValue { position, .. } => *position,
Self::InstructionIndexOutOfBounds { position, .. } => *position,
Self::LocalIndexOutOfBounds { position, .. } => *position,
Self::NativeFunction(error) => error.position(),
Self::RegisterIndexOutOfBounds { position, .. } => *position,
Self::StackOverflow { position } => *position,
Self::StackUnderflow { position } => *position,
Self::UndefinedLocal { position, .. } => *position,
Self::Value { position, .. } => *position,
Self::ValueDisplay { position, .. } => *position,
}
}
}

View File

@ -0,0 +1,39 @@
use std::fmt::{self, Debug, Display, Formatter};
use crate::{Chunk, DustString};
use super::Register;
#[derive(Debug)]
pub struct FunctionCall<'a> {
pub chunk: &'a Chunk,
pub ip: usize,
pub return_register: u8,
pub registers: Vec<Register>,
}
impl<'a> FunctionCall<'a> {
pub fn new(chunk: &'a Chunk, return_register: u8) -> Self {
Self {
chunk,
ip: 0,
return_register,
registers: vec![Register::Empty; chunk.register_count],
}
}
}
impl Display for FunctionCall<'_> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"FunctionCall: {} | IP: {} | Registers: {}",
self.chunk
.name
.as_ref()
.unwrap_or(&DustString::from("anonymous")),
self.ip,
self.registers.len()
)
}
}

103
dust-lang/src/vm/mod.rs Normal file
View File

@ -0,0 +1,103 @@
//! Virtual machine and errors
mod function_call;
mod run_action;
mod stack;
mod thread;
use std::{
fmt::{self, Debug, Display, Formatter},
sync::mpsc,
thread::spawn,
};
pub use function_call::FunctionCall;
pub(crate) use run_action::get_next_action;
pub use run_action::RunAction;
pub use stack::Stack;
pub use thread::{Thread, ThreadData};
use tracing::{span, Level};
use crate::{compile, Chunk, DustError, Value};
pub fn run(source: &str) -> Result<Option<Value>, DustError> {
let chunk = compile(source)?;
let vm = Vm::new(chunk);
Ok(vm.run())
}
pub struct Vm {
threads: Vec<Thread>,
}
impl Vm {
pub fn new(chunk: Chunk) -> Self {
let threads = vec![Thread::new(chunk)];
debug_assert_eq!(1, threads.capacity());
Self { threads }
}
pub fn run(mut self) -> Option<Value> {
let span = span!(Level::INFO, "Run");
let _enter = span.enter();
if self.threads.len() == 1 {
return self.threads[0].run();
}
let (tx, rx) = mpsc::channel();
for mut thread in self.threads {
let tx = tx.clone();
spawn(move || {
let return_value = thread.run();
if let Some(value) = return_value {
tx.send(value).unwrap();
}
});
}
rx.into_iter().last()
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Register {
Empty,
Value(Value),
Pointer(Pointer),
}
impl Display for Register {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Empty => write!(f, "empty"),
Self::Value(value) => write!(f, "{}", value),
Self::Pointer(pointer) => write!(f, "{}", pointer),
}
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub enum Pointer {
Register(u8),
Constant(u8),
Stack(usize, u8),
}
impl Display for Pointer {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Register(index) => write!(f, "PR{}", index),
Self::Constant(index) => write!(f, "PC{}", index),
Self::Stack(call_index, register_index) => {
write!(f, "PS{}R{}", call_index, register_index)
}
}
}
}

View File

@ -0,0 +1,645 @@
use tracing::trace;
use crate::{
instruction::{
Add, Call, CallNative, Close, Divide, Equal, GetLocal, Jump, Less, LessEqual, LoadBoolean,
LoadConstant, LoadFunction, LoadList, LoadSelf, Modulo, Multiply, Negate, Not, Point,
Return, SetLocal, Subtract, Test, TestSet,
},
vm::FunctionCall,
AbstractList, Argument, ConcreteValue, Instruction, Type, Value,
};
use super::{thread::ThreadData, Pointer, Register};
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct RunAction {
pub logic: RunnerLogic,
pub instruction: Instruction,
}
impl From<Instruction> for RunAction {
fn from(instruction: Instruction) -> Self {
let operation = instruction.operation();
let logic = RUNNER_LOGIC_TABLE[operation.0 as usize];
RunAction { logic, instruction }
}
}
pub type RunnerLogic = fn(Instruction, &mut ThreadData) -> bool;
pub const RUNNER_LOGIC_TABLE: [RunnerLogic; 25] = [
point,
close,
load_boolean,
load_constant,
load_function,
load_list,
load_self,
get_local,
set_local,
add,
subtract,
multiply,
divide,
modulo,
test,
test_set,
equal,
less,
less_equal,
negate,
not,
call,
call_native,
jump,
r#return,
];
pub(crate) fn get_next_action(data: &mut ThreadData) -> RunAction {
let current_call = data.call_stack.last_mut_unchecked();
let instruction = current_call.chunk.instructions[current_call.ip];
let operation = instruction.operation();
let logic = RUNNER_LOGIC_TABLE[operation.0 as usize];
current_call.ip += 1;
RunAction { logic, instruction }
}
pub fn point(instruction: Instruction, data: &mut ThreadData) -> bool {
let Point { from, to } = instruction.into();
let from_register = data.get_register_unchecked(from);
let from_register_is_empty = matches!(from_register, Register::Empty);
if !from_register_is_empty {
let register = Register::Pointer(Pointer::Register(to));
data.set_register(from, register);
}
data.next_action = get_next_action(data);
false
}
pub fn close(instruction: Instruction, data: &mut ThreadData) -> bool {
let Close { from, to } = instruction.into();
for register_index in from..to {
data.set_register(register_index, Register::Empty);
}
data.next_action = get_next_action(data);
false
}
pub fn load_boolean(instruction: Instruction, data: &mut ThreadData) -> bool {
let LoadBoolean {
destination,
value,
jump_next,
} = instruction.into();
let boolean = Value::Concrete(ConcreteValue::Boolean(value));
let register = Register::Value(boolean);
data.set_register(destination, register);
if jump_next {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn load_constant(instruction: Instruction, data: &mut ThreadData) -> bool {
let LoadConstant {
destination,
constant_index,
jump_next,
} = instruction.into();
let register = Register::Pointer(Pointer::Constant(constant_index));
trace!("Load constant {constant_index} into R{destination}");
data.set_register(destination, register);
if jump_next {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn load_list(instruction: Instruction, data: &mut ThreadData) -> bool {
let LoadList {
destination,
start_register,
} = instruction.into();
let mut item_pointers = Vec::with_capacity((destination - start_register) as usize);
let mut item_type = Type::Any;
for register_index in start_register..destination {
match data.get_register_unchecked(register_index) {
Register::Empty => continue,
Register::Value(value) => {
if item_type == Type::Any {
item_type = value.r#type();
}
}
Register::Pointer(pointer) => {
if item_type == Type::Any {
item_type = data.follow_pointer_unchecked(*pointer).r#type();
}
}
}
let pointer = Pointer::Register(register_index);
item_pointers.push(pointer);
}
let list_value = Value::AbstractList(AbstractList {
item_type,
item_pointers,
});
let register = Register::Value(list_value);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn load_function(instruction: Instruction, data: &mut ThreadData) -> bool {
let LoadFunction {
destination,
prototype_index,
} = instruction.into();
let prototype_index = prototype_index as usize;
let current_call = data.call_stack.last_mut_unchecked();
let prototype = &current_call.chunk.prototypes[prototype_index];
let function = prototype.as_function();
let register = Register::Value(Value::Function(function));
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn load_self(instruction: Instruction, data: &mut ThreadData) -> bool {
let LoadSelf { destination } = instruction.into();
let current_call = data.call_stack.last_mut_unchecked();
let prototype = &current_call.chunk;
let function = prototype.as_function();
let register = Register::Value(Value::Function(function));
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn get_local(instruction: Instruction, data: &mut ThreadData) -> bool {
let GetLocal {
destination,
local_index,
} = instruction.into();
let local_register_index = data.get_local_register(local_index);
let register = Register::Pointer(Pointer::Register(local_register_index));
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn set_local(instruction: Instruction, data: &mut ThreadData) -> bool {
let SetLocal {
register_index,
local_index,
} = instruction.into();
let local_register_index = data.get_local_register(local_index);
let register = Register::Pointer(Pointer::Register(register_index));
data.set_register(local_register_index, register);
data.next_action = get_next_action(data);
false
}
pub fn add(instruction: Instruction, data: &mut ThreadData) -> bool {
let Add {
destination,
left,
right,
} = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let sum = left.add(right);
let register = Register::Value(sum);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn subtract(instruction: Instruction, data: &mut ThreadData) -> bool {
let Subtract {
destination,
left,
right,
} = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let difference = left.subtract(right);
let register = Register::Value(difference);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn multiply(instruction: Instruction, data: &mut ThreadData) -> bool {
let Multiply {
destination,
left,
right,
} = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let product = match (left, right) {
(Value::Concrete(left), Value::Concrete(right)) => match (left, right) {
(ConcreteValue::Integer(left), ConcreteValue::Integer(right)) => {
ConcreteValue::Integer(left * right).to_value()
}
_ => panic!("Value Error: Cannot multiply values"),
},
_ => panic!("Value Error: Cannot multiply values"),
};
let register = Register::Value(product);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn divide(instruction: Instruction, data: &mut ThreadData) -> bool {
let Divide {
destination,
left,
right,
} = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let quotient = match (left, right) {
(Value::Concrete(left), Value::Concrete(right)) => match (left, right) {
(ConcreteValue::Integer(left), ConcreteValue::Integer(right)) => {
ConcreteValue::Integer(left / right).to_value()
}
_ => panic!("Value Error: Cannot divide values"),
},
_ => panic!("Value Error: Cannot divide values"),
};
let register = Register::Value(quotient);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn modulo(instruction: Instruction, data: &mut ThreadData) -> bool {
let Modulo {
destination,
left,
right,
} = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let remainder = match (left, right) {
(Value::Concrete(left), Value::Concrete(right)) => match (left, right) {
(ConcreteValue::Integer(left), ConcreteValue::Integer(right)) => {
ConcreteValue::Integer(left % right).to_value()
}
_ => panic!("Value Error: Cannot modulo values"),
},
_ => panic!("Value Error: Cannot modulo values"),
};
let register = Register::Value(remainder);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn test(instruction: Instruction, data: &mut ThreadData) -> bool {
let Test {
operand_register,
test_value,
} = instruction.into();
let value = data.open_register_unchecked(operand_register);
let boolean = if let Value::Concrete(ConcreteValue::Boolean(boolean)) = value {
*boolean
} else {
panic!("VM Error: Expected boolean value for TEST operation",);
};
if boolean == test_value {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn test_set(instruction: Instruction, data: &mut ThreadData) -> bool {
let TestSet {
destination,
argument,
test_value,
} = instruction.into();
let value = data.get_argument_unchecked(argument);
let boolean = if let Value::Concrete(ConcreteValue::Boolean(boolean)) = value {
*boolean
} else {
panic!("VM Error: Expected boolean value for TEST_SET operation",);
};
if boolean == test_value {
} else {
let pointer = match argument {
Argument::Constant(constant_index) => Pointer::Constant(constant_index),
Argument::Register(register_index) => Pointer::Register(register_index),
};
let register = Register::Pointer(pointer);
data.set_register(destination, register);
}
data.next_action = get_next_action(data);
false
}
pub fn equal(instruction: Instruction, data: &mut ThreadData) -> bool {
let Equal { value, left, right } = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let is_equal = left.equals(right);
if is_equal == value {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn less(instruction: Instruction, data: &mut ThreadData) -> bool {
let Less { value, left, right } = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let is_less = left < right;
if is_less == value {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn less_equal(instruction: Instruction, data: &mut ThreadData) -> bool {
let LessEqual { value, left, right } = instruction.into();
let left = data.get_argument_unchecked(left);
let right = data.get_argument_unchecked(right);
let is_less_or_equal = left <= right;
if is_less_or_equal == value {
let current_call = data.call_stack.last_mut_unchecked();
current_call.ip += 1;
}
data.next_action = get_next_action(data);
false
}
pub fn negate(instruction: Instruction, data: &mut ThreadData) -> bool {
let Negate {
destination,
argument,
} = instruction.into();
let argument = data.get_argument_unchecked(argument);
let negated = argument.negate();
let register = Register::Value(negated);
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn not(instruction: Instruction, data: &mut ThreadData) -> bool {
let Not {
destination,
argument,
} = instruction.into();
let argument = data.get_argument_unchecked(argument);
let not = match argument {
Value::Concrete(ConcreteValue::Boolean(boolean)) => ConcreteValue::Boolean(!boolean),
_ => panic!("VM Error: Expected boolean value for NOT operation"),
};
let register = Register::Value(Value::Concrete(not));
data.set_register(destination, register);
data.next_action = get_next_action(data);
false
}
pub fn jump(instruction: Instruction, data: &mut ThreadData) -> bool {
let Jump {
offset,
is_positive,
} = instruction.into();
let offset = offset as usize;
let current_call = data.call_stack.last_mut_unchecked();
if is_positive {
current_call.ip += offset;
} else {
current_call.ip -= offset + 1;
}
data.next_action = get_next_action(data);
false
}
pub fn call(instruction: Instruction, data: &mut ThreadData) -> bool {
let Call {
destination: return_register,
function_register,
argument_count,
is_recursive,
} = instruction.into();
let current_call = data.call_stack.last_unchecked();
let first_argument_register = return_register - argument_count;
let prototype = if is_recursive {
current_call.chunk
} else {
let function = data
.open_register_unchecked(function_register)
.as_function()
.unwrap();
&current_call.chunk.prototypes[function.prototype_index as usize]
};
let mut next_call = FunctionCall::new(prototype, return_register);
let mut argument_index = 0;
for register_index in first_argument_register..return_register {
let value_option = data.open_register_allow_empty_unchecked(register_index);
let argument = if let Some(value) = value_option {
value.clone()
} else {
continue;
};
next_call.registers[argument_index] = Register::Value(argument);
argument_index += 1;
}
data.call_stack.push(next_call);
data.next_action = get_next_action(data);
false
}
pub fn call_native(instruction: Instruction, data: &mut ThreadData) -> bool {
let CallNative {
destination,
function,
argument_count,
} = instruction.into();
let first_argument_index = destination - argument_count;
let argument_range = first_argument_index..destination;
function.call(data, Some(destination), argument_range)
}
pub fn r#return(instruction: Instruction, data: &mut ThreadData) -> bool {
trace!("Returning with call stack:\n{}", data.call_stack);
let Return {
should_return_value,
return_register,
} = instruction.into();
let (destination, return_value) = if data.call_stack.len() == 1 {
if should_return_value {
data.return_value_index = Some(return_register);
};
return true;
} else {
let return_value = data.empty_register_or_clone_constant_unchecked(return_register);
let destination = data.call_stack.pop_unchecked().return_register;
(destination, return_value)
};
if should_return_value {
data.set_register(destination, Register::Value(return_value));
}
data.next_action = get_next_action(data);
false
}
#[cfg(test)]
mod tests {
use crate::Operation;
use super::*;
const ALL_OPERATIONS: [(Operation, RunnerLogic); 24] = [
(Operation::POINT, point),
(Operation::CLOSE, close),
(Operation::LOAD_BOOLEAN, load_boolean),
(Operation::LOAD_CONSTANT, load_constant),
(Operation::LOAD_LIST, load_list),
(Operation::LOAD_SELF, load_self),
(Operation::GET_LOCAL, get_local),
(Operation::SET_LOCAL, set_local),
(Operation::ADD, add),
(Operation::SUBTRACT, subtract),
(Operation::MULTIPLY, multiply),
(Operation::DIVIDE, divide),
(Operation::MODULO, modulo),
(Operation::TEST, test),
(Operation::TEST_SET, test_set),
(Operation::EQUAL, equal),
(Operation::LESS, less),
(Operation::LESS_EQUAL, less_equal),
(Operation::NEGATE, negate),
(Operation::NOT, not),
(Operation::CALL, call),
(Operation::CALL_NATIVE, call_native),
(Operation::JUMP, jump),
(Operation::RETURN, r#return),
];
#[test]
fn operations_map_to_the_correct_runner() {
for (operation, expected_runner) in ALL_OPERATIONS {
let actual_runner = RUNNER_LOGIC_TABLE[operation.0 as usize];
assert_eq!(
expected_runner, actual_runner,
"{operation} runner is incorrect"
);
}
}
}

137
dust-lang/src/vm/stack.rs Normal file
View File

@ -0,0 +1,137 @@
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Index, IndexMut, Range},
};
use super::FunctionCall;
#[derive(Clone, PartialEq)]
pub struct Stack<T> {
items: Vec<T>,
}
impl<T> Stack<T> {
pub fn new() -> Self {
Stack {
items: Vec::with_capacity(1),
}
}
pub fn with_capacity(capacity: usize) -> Self {
Stack {
items: Vec::with_capacity(capacity),
}
}
pub fn is_empty(&self) -> bool {
self.items.is_empty()
}
pub fn len(&self) -> usize {
self.items.len()
}
pub fn get_unchecked(&self, index: usize) -> &T {
if cfg!(debug_assertions) {
assert!(index < self.len(), "Stack underflow");
&self.items[index]
} else {
unsafe { self.items.get_unchecked(index) }
}
}
pub fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
if cfg!(debug_assertions) {
assert!(index < self.len(), "Stack underflow");
&mut self.items[index]
} else {
unsafe { self.items.get_unchecked_mut(index) }
}
}
pub fn push(&mut self, item: T) {
self.items.push(item);
}
pub fn pop(&mut self) -> Option<T> {
self.items.pop()
}
pub fn last(&self) -> Option<&T> {
self.items.last()
}
pub fn last_mut(&mut self) -> Option<&mut T> {
self.items.last_mut()
}
pub fn pop_unchecked(&mut self) -> T {
if cfg!(debug_assertions) {
assert!(!self.is_empty(), "Stack underflow");
self.items.pop().unwrap()
} else {
unsafe { self.items.pop().unwrap_unchecked() }
}
}
pub fn last_unchecked(&self) -> &T {
if cfg!(debug_assertions) {
assert!(!self.is_empty(), "Stack underflow");
self.items.last().unwrap()
} else {
unsafe { self.items.last().unwrap_unchecked() }
}
}
pub fn last_mut_unchecked(&mut self) -> &mut T {
if cfg!(debug_assertions) {
assert!(!self.is_empty(), "Stack underflow");
self.items.last_mut().unwrap()
} else {
unsafe { self.items.last_mut().unwrap_unchecked() }
}
}
}
impl<T> Default for Stack<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> Index<Range<usize>> for Stack<T> {
type Output = [T];
fn index(&self, index: Range<usize>) -> &Self::Output {
&self.items[index]
}
}
impl<T> IndexMut<Range<usize>> for Stack<T> {
fn index_mut(&mut self, index: Range<usize>) -> &mut Self::Output {
&mut self.items[index]
}
}
impl<T: Debug> Debug for Stack<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.items)
}
}
impl Display for Stack<FunctionCall<'_>> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
writeln!(f, "----- DUST CALL STACK -----")?;
for (index, function_call) in self.items.iter().enumerate().rev() {
writeln!(f, "{index:02} | {function_call}")?;
}
write!(f, "---------------------------")
}
}

272
dust-lang/src/vm/thread.rs Normal file
View File

@ -0,0 +1,272 @@
use std::mem::replace;
use tracing::{info, trace};
use crate::{vm::FunctionCall, Argument, Chunk, DustString, Span, Value};
use super::{Pointer, Register, RunAction, Stack};
pub struct Thread {
chunk: Chunk,
}
impl Thread {
pub fn new(chunk: Chunk) -> Self {
Thread { chunk }
}
pub fn run(&mut self) -> Option<Value> {
info!(
"Starting thread with {}",
self.chunk
.name
.clone()
.unwrap_or_else(|| DustString::from("anonymous"))
);
let mut call_stack = Stack::with_capacity(self.chunk.prototypes.len() + 1);
let main_call = FunctionCall::new(&self.chunk, 0);
call_stack.push(main_call);
let first_action = RunAction::from(*self.chunk.instructions.first().unwrap());
let mut thread_data = ThreadData {
call_stack,
next_action: first_action,
return_value_index: None,
};
loop {
trace!("Instruction: {}", thread_data.next_action.instruction);
let should_end = (thread_data.next_action.logic)(
thread_data.next_action.instruction,
&mut thread_data,
);
if should_end {
let return_value = if let Some(register_index) = thread_data.return_value_index {
let value =
thread_data.empty_register_or_clone_constant_unchecked(register_index);
Some(value)
} else {
None
};
return return_value;
}
}
}
}
#[derive(Debug)]
pub struct ThreadData<'a> {
pub call_stack: Stack<FunctionCall<'a>>,
pub next_action: RunAction,
pub return_value_index: Option<u8>,
}
impl ThreadData<'_> {
pub fn current_position(&self) -> Span {
let current_call = self.call_stack.last_unchecked();
current_call.chunk.positions[current_call.ip]
}
pub(crate) fn follow_pointer_unchecked(&self, pointer: Pointer) -> &Value {
trace!("Follow pointer {pointer}");
match pointer {
Pointer::Register(register_index) => self.open_register_unchecked(register_index),
Pointer::Constant(constant_index) => self.get_constant_unchecked(constant_index),
Pointer::Stack(stack_index, register_index) => unsafe {
let register = self
.call_stack
.get_unchecked(stack_index)
.registers
.get_unchecked(register_index as usize);
match register {
Register::Value(value) => value,
Register::Pointer(pointer) => self.follow_pointer_unchecked(*pointer),
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
},
}
}
pub fn get_register_unchecked(&self, register_index: u8) -> &Register {
trace!("Get register R{register_index}");
let register_index = register_index as usize;
if cfg!(debug_assertions) {
&self.call_stack.last_unchecked().registers[register_index]
} else {
unsafe {
self.call_stack
.last_unchecked()
.registers
.get_unchecked(register_index)
}
}
}
pub fn set_register(&mut self, to_register: u8, register: Register) {
let to_register = to_register as usize;
self.call_stack.last_mut_unchecked().registers[to_register] = register;
}
pub fn open_register_unchecked(&self, register_index: u8) -> &Value {
let register_index = register_index as usize;
let register = if cfg!(debug_assertions) {
&self.call_stack.last_unchecked().registers[register_index]
} else {
unsafe {
self.call_stack
.last_unchecked()
.registers
.get_unchecked(register_index)
}
};
match register {
Register::Value(value) => {
trace!("Register R{register_index} opened to value {value}");
value
}
Register::Pointer(pointer) => {
trace!("Open register R{register_index} opened to pointer {pointer}");
self.follow_pointer_unchecked(*pointer)
}
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
}
pub fn open_register_allow_empty_unchecked(&self, register_index: u8) -> Option<&Value> {
trace!("Open register R{register_index}");
let register = self.get_register_unchecked(register_index);
match register {
Register::Value(value) => {
trace!("Register R{register_index} openned to value {value}");
Some(value)
}
Register::Pointer(pointer) => {
trace!("Open register R{register_index} openned to pointer {pointer}");
Some(self.follow_pointer_unchecked(*pointer))
}
Register::Empty => None,
}
}
pub fn empty_register_or_clone_constant_unchecked(&mut self, register_index: u8) -> Value {
let register_index = register_index as usize;
let old_register = replace(
&mut self.call_stack.last_mut_unchecked().registers[register_index],
Register::Empty,
);
match old_register {
Register::Value(value) => value,
Register::Pointer(pointer) => match pointer {
Pointer::Register(register_index) => {
self.empty_register_or_clone_constant_unchecked(register_index)
}
Pointer::Constant(constant_index) => {
self.get_constant_unchecked(constant_index).clone()
}
Pointer::Stack(stack_index, register_index) => {
let call = self.call_stack.get_unchecked_mut(stack_index);
let old_register = replace(
&mut call.registers[register_index as usize],
Register::Empty,
);
match old_register {
Register::Value(value) => value,
Register::Pointer(pointer) => {
self.follow_pointer_unchecked(pointer).clone()
}
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
}
},
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
}
pub fn clone_register_value_or_constant_unchecked(&self, register_index: u8) -> Value {
let register = self.get_register_unchecked(register_index);
match register {
Register::Value(value) => value.clone(),
Register::Pointer(pointer) => match pointer {
Pointer::Register(register_index) => {
self.open_register_unchecked(*register_index).clone()
}
Pointer::Constant(constant_index) => {
self.get_constant_unchecked(*constant_index).clone()
}
Pointer::Stack(stack_index, register_index) => {
let call = self.call_stack.get_unchecked(*stack_index);
let register = &call.registers[*register_index as usize];
match register {
Register::Value(value) => value.clone(),
Register::Pointer(pointer) => {
self.follow_pointer_unchecked(*pointer).clone()
}
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
}
},
Register::Empty => panic!("VM Error: Register {register_index} is empty"),
}
}
/// DRY helper to get a value from an Argument
pub fn get_argument_unchecked(&self, argument: Argument) -> &Value {
match argument {
Argument::Constant(constant_index) => self.get_constant_unchecked(constant_index),
Argument::Register(register_index) => self.open_register_unchecked(register_index),
}
}
pub fn get_constant_unchecked(&self, constant_index: u8) -> &Value {
let constant_index = constant_index as usize;
if cfg!(debug_assertions) {
&self.call_stack.last().unwrap().chunk.constants[constant_index]
} else {
unsafe {
self.call_stack
.last_unchecked()
.chunk
.constants
.get_unchecked(constant_index)
}
}
}
pub fn get_local_register(&self, local_index: u8) -> u8 {
let local_index = local_index as usize;
let chunk = self.call_stack.last_unchecked().chunk;
assert!(
local_index < chunk.locals.len(),
"VM Error: Local index out of bounds"
);
chunk.locals[local_index].register_index
}
}

View File

@ -0,0 +1,81 @@
use dust_lang::*;
#[test]
fn add_assign_expects_mutable_variable() {
let source = "1 += 2";
assert_eq!(
compile(source),
Err(DustError::Compile {
error: CompileError::ExpectedMutableVariable {
found: Token::Integer("1").to_owned(),
position: Span(0, 1)
},
source
})
);
}
#[test]
fn divide_assign_expects_mutable_variable() {
let source = "1 -= 2";
assert_eq!(
compile(source),
Err(DustError::Compile {
error: CompileError::ExpectedMutableVariable {
found: Token::Integer("1").to_owned(),
position: Span(0, 1)
},
source
})
);
}
#[test]
fn multiply_assign_expects_mutable_variable() {
let source = "1 *= 2";
assert_eq!(
compile(source),
Err(DustError::Compile {
error: CompileError::ExpectedMutableVariable {
found: Token::Integer("1").to_owned(),
position: Span(0, 1)
},
source
})
);
}
#[test]
fn subtract_assign_expects_mutable_variable() {
let source = "1 -= 2";
assert_eq!(
compile(source),
Err(DustError::Compile {
error: CompileError::ExpectedMutableVariable {
found: Token::Integer("1").to_owned(),
position: Span(0, 1)
},
source
})
);
}
#[test]
fn modulo_assign_expects_mutable_variable() {
let source = "1 %= 2";
assert_eq!(
compile(source),
Err(DustError::Compile {
error: CompileError::ExpectedMutableVariable {
found: Token::Integer("1").to_owned(),
position: Span(0, 1)
},
source
})
);
}

View File

@ -11,15 +11,11 @@ fn constant() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Integer) return_type: Type::Integer
}, },
vec![ vec![
( (Instruction::load_constant(0, 0, false), Span(0, 2)),
Instruction::load_constant(Destination::Register(0), 0, false), (Instruction::r#return(true), Span(2, 2))
Type::Integer,
Span(0, 2)
),
(Instruction::r#return(true), Type::None, Span(2, 2))
], ],
vec![ConcreteValue::Integer(42)], vec![ConcreteValue::Integer(42)],
vec![] vec![]
@ -40,9 +36,9 @@ fn empty() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::None) return_type: Type::None
}, },
vec![(Instruction::r#return(false), Type::None, Span(0, 0))], vec![(Instruction::r#return(false), Span(0, 0))],
vec![], vec![],
vec![] vec![]
)) ))
@ -61,28 +57,18 @@ fn parentheses_precedence() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Integer) return_type: Type::Integer
}, },
vec![ vec![
( (
Instruction::add( Instruction::add(0, Argument::Constant(0), Argument::Constant(1)),
Destination::Register(0),
Argument::Constant(0),
Argument::Constant(1)
),
Type::Integer,
Span(3, 4) Span(3, 4)
), ),
( (
Instruction::multiply( Instruction::multiply(1, Argument::Register(0), Argument::Constant(2)),
Destination::Register(1),
Argument::Register(0),
Argument::Constant(2)
),
Type::Integer,
Span(8, 9) Span(8, 9)
), ),
(Instruction::r#return(true), Type::None, Span(11, 11)), (Instruction::r#return(true), Span(11, 11)),
], ],
vec![ vec![
ConcreteValue::Integer(1), ConcreteValue::Integer(1),
@ -95,3 +81,49 @@ fn parentheses_precedence() {
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(9)))); assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(9))));
} }
#[test]
fn math_operator_precedence() {
let source = "1 + 2 - 3 * 4 / 5";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Integer,
},
vec![
(
Instruction::add(0, Argument::Constant(0), Argument::Constant(1)),
Span(2, 3)
),
(
Instruction::multiply(1, Argument::Constant(2), Argument::Constant(3)),
Span(10, 11)
),
(
Instruction::divide(2, Argument::Register(1), Argument::Constant(4)),
Span(14, 15)
),
(
Instruction::subtract(3, Argument::Register(0), Argument::Register(2)),
Span(6, 7)
),
(Instruction::r#return(true), Span(17, 17)),
],
vec![
ConcreteValue::Integer(1),
ConcreteValue::Integer(2),
ConcreteValue::Integer(3),
ConcreteValue::Integer(4),
ConcreteValue::Integer(5),
],
vec![]
))
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(1))));
}

View File

@ -11,26 +11,14 @@ fn equal() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::equal(true, Argument::Constant(0), Argument::Constant(1)), Instruction::equal(0, true, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 4) Span(2, 4)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 4)), (Instruction::r#return(true), Span(6, 6)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 4)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 4)
),
(Instruction::r#return(true), Type::None, Span(6, 6)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]
@ -51,26 +39,14 @@ fn greater() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::less_equal(false, Argument::Constant(0), Argument::Constant(1)), Instruction::less_equal(0, false, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 3) Span(2, 3)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 3)), (Instruction::r#return(true), Span(5, 5)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 3)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 3)
),
(Instruction::r#return(true), Type::None, Span(5, 5)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]
@ -91,26 +67,14 @@ fn greater_than_or_equal() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::less(false, Argument::Constant(0), Argument::Constant(1)), Instruction::less(0, false, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 4) Span(2, 4)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 4)), (Instruction::r#return(true), Span(6, 6)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 4)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 4)
),
(Instruction::r#return(true), Type::None, Span(6, 6)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]
@ -131,26 +95,14 @@ fn less_than() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::less(true, Argument::Constant(0), Argument::Constant(1)), Instruction::less(0, true, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 3) Span(2, 3)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 3)), (Instruction::r#return(true), Span(5, 5)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 3)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 3)
),
(Instruction::r#return(true), Type::None, Span(5, 5)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]
@ -171,26 +123,14 @@ fn less_than_or_equal() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::less_equal(true, Argument::Constant(0), Argument::Constant(1)), Instruction::less_equal(0, true, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 4) Span(2, 4)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 4)), (Instruction::r#return(true), Span(6, 6)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 4)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 4)
),
(Instruction::r#return(true), Type::None, Span(6, 6)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]
@ -211,26 +151,14 @@ fn not_equal() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Boolean) return_type: Type::Boolean
}, },
vec![ vec![
( (
Instruction::equal(false, Argument::Constant(0), Argument::Constant(1)), Instruction::equal(0, false, Argument::Constant(0), Argument::Constant(1)),
Type::None,
Span(2, 4) Span(2, 4)
), ),
(Instruction::jump(1, true), Type::None, Span(2, 4)), (Instruction::r#return(true), Span(6, 6)),
(
Instruction::load_boolean(Destination::Register(0), true, true),
Type::Boolean,
Span(2, 4)
),
(
Instruction::load_boolean(Destination::Register(0), false, false),
Type::Boolean,
Span(2, 4)
),
(Instruction::r#return(true), Type::None, Span(6, 6)),
], ],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)], vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![] vec![]

View File

@ -1,409 +0,0 @@
use dust_lang::*;
#[test]
fn equality_assignment_long() {
let source = "let a = if 4 == 4 { true } else { false }; a";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Boolean)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(13, 15)
),
(Instruction::jump(1, true), Span(18, 19)),
(Instruction::load_boolean(0, true, true), Span(20, 24)),
(Instruction::load_boolean(0, false, false), Span(34, 39)),
(Instruction::define_local(0, 0, false), Span(4, 5)),
(Instruction::get_local(1, 0), Span(43, 44)),
(Instruction::r#return(true), Span(44, 44)),
],
vec![ConcreteValue::Integer(4), ConcreteValue::string("a")],
vec![Local::new(1, Type::Boolean, false, Scope::default(),)]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Boolean(true))));
}
#[test]
fn equality_assignment_short() {
let source = "let a = 4 == 4 a";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Boolean)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(10, 12)
),
(Instruction::jump(1, true), Span(10, 12)),
(Instruction::load_boolean(0, true, true), Span(10, 12)),
(Instruction::load_boolean(0, false, false), Span(10, 12)),
(Instruction::define_local(0, 0, false), Span(4, 5)),
(Instruction::get_local(1, 0), Span(15, 16)),
(Instruction::r#return(true), Span(16, 16)),
],
vec![ConcreteValue::Integer(4), ConcreteValue::string("a")],
vec![Local::new(1, Type::Boolean, false, Scope::default())]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Boolean(true))));
}
#[test]
fn if_else_assigment_false() {
let source = r#"
let a = if 4 == 3 {
panic();
0
} else {
1; 2; 3; 4;
42
};
a"#;
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Integer)
},
vec![
(
*Instruction::equal(true, 0, 1)
.set_b_is_constant()
.set_c_is_constant(),
Span(22, 24)
),
(Instruction::jump(3, true), Span(27, 28)),
(
Instruction::call_native(0, NativeFunction::Panic, 0),
Span(41, 48)
),
(Instruction::load_constant(0, 2, false), Span(62, 63)),
(Instruction::jump(5, true), Span(129, 130)),
(Instruction::load_constant(1, 3, false), Span(93, 94)),
(Instruction::load_constant(2, 4, false), Span(96, 97)),
(Instruction::load_constant(3, 1, false), Span(99, 100)),
(Instruction::load_constant(4, 0, false), Span(102, 103)),
(Instruction::load_constant(5, 5, false), Span(117, 119)),
(Instruction::r#move(5, 0), Span(129, 130)),
(Instruction::define_local(5, 0, false), Span(13, 14)),
(Instruction::get_local(6, 0), Span(139, 140)),
(Instruction::r#return(true), Span(140, 140)),
],
vec![
ConcreteValue::Integer(4),
ConcreteValue::Integer(3),
ConcreteValue::Integer(0),
ConcreteValue::Integer(1),
ConcreteValue::Integer(2),
ConcreteValue::Integer(42),
ConcreteValue::string("a")
],
vec![Local::new(6, Type::Integer, false, Scope::default())]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(42))));
}
#[test]
fn if_else_assigment_true() {
let source = r#"
let a = if 4 == 4 {
1; 2; 3; 4;
42
} else {
panic();
0
};
a"#;
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Integer)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(22, 24)
),
(Instruction::jump(6, true), Span(27, 28)),
(Instruction::load_constant(0, 1, false), Span(41, 42)),
(Instruction::load_constant(1, 2, false), Span(44, 45)),
(Instruction::load_constant(2, 3, false), Span(47, 48)),
(Instruction::load_constant(3, 0, false), Span(50, 51)),
(Instruction::load_constant(4, 4, false), Span(65, 67)),
(Instruction::jump(2, true), Span(129, 130)),
(
Instruction::call_native(5, NativeFunction::Panic, 0),
Span(97, 104)
),
(Instruction::load_constant(5, 5, false), Span(118, 119)),
(Instruction::r#move(5, 4), Span(129, 130)),
(Instruction::define_local(5, 0, false), Span(13, 14)),
(Instruction::get_local(6, 0), Span(139, 140)),
(Instruction::r#return(true), Span(140, 140)),
],
vec![
ConcreteValue::Integer(4),
ConcreteValue::Integer(1),
ConcreteValue::Integer(2),
ConcreteValue::Integer(3),
ConcreteValue::Integer(42),
ConcreteValue::Integer(0),
ConcreteValue::string("a")
],
vec![Local::new(6, Type::Integer, false, Scope::default())]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(42))));
}
#[test]
fn if_else_complex() {
let source = "
if 1 == 1 {
1; 2; 3; 4;
} else {
1; 2; 3; 4;
}";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::None)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(14, 16)
),
(Instruction::jump(5, true), Span(19, 20)),
(Instruction::load_constant(0, 0, false), Span(33, 34)),
(Instruction::load_constant(1, 1, false), Span(36, 37)),
(Instruction::load_constant(2, 2, false), Span(39, 40)),
(Instruction::load_constant(3, 3, false), Span(42, 43)),
(Instruction::jump(4, true), Span(95, 95)),
(Instruction::load_constant(4, 0, false), Span(74, 75)),
(Instruction::load_constant(5, 1, false), Span(77, 78)),
(Instruction::load_constant(6, 2, false), Span(80, 81)),
(Instruction::load_constant(7, 3, false), Span(83, 84)),
(Instruction::r#move(7, 3), Span(95, 95)),
(Instruction::r#return(false), Span(95, 95)),
],
vec![
ConcreteValue::Integer(1),
ConcreteValue::Integer(2),
ConcreteValue::Integer(3),
ConcreteValue::Integer(4),
],
vec![]
))
);
assert_eq!(run(source), Ok(None));
}
#[test]
fn if_else_false() {
let source = "if 1 == 2 { panic(); 0 } else { 42 }";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Integer)
},
vec![
(
*Instruction::equal(true, 0, 1)
.set_b_is_constant()
.set_c_is_constant(),
Span(5, 7)
),
(Instruction::jump(2, true), Span(10, 11)),
(
Instruction::call_native(0, NativeFunction::Panic, 0),
Span(12, 19)
),
(Instruction::load_constant(0, 2, true), Span(21, 22)),
(Instruction::load_constant(1, 3, false), Span(32, 34)),
(Instruction::r#move(1, 0), Span(36, 36)),
(Instruction::r#return(true), Span(36, 36)),
],
vec![
ConcreteValue::Integer(1),
ConcreteValue::Integer(2),
ConcreteValue::Integer(0),
ConcreteValue::Integer(42)
],
vec![]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(42))));
}
#[test]
fn if_else_true() {
let source = "if 1 == 1 { 42 } else { panic(); 0 }";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Integer)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(5, 7)
),
(Instruction::jump(2, true), Span(10, 11)),
(Instruction::load_constant(0, 1, false), Span(12, 14)),
(Instruction::jump(2, true), Span(36, 36)),
(
Instruction::call_native(1, NativeFunction::Panic, 0),
Span(24, 31)
),
(Instruction::load_constant(1, 2, false), Span(33, 34)),
(Instruction::r#move(1, 0), Span(36, 36)),
(Instruction::r#return(true), Span(36, 36))
],
vec![
ConcreteValue::Integer(1),
ConcreteValue::Integer(42),
ConcreteValue::Integer(0)
],
vec![]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(42))));
}
#[test]
fn if_false() {
let source = "if 1 == 2 { panic() }";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::None)
},
vec![
(
*Instruction::equal(true, 0, 1)
.set_b_is_constant()
.set_c_is_constant(),
Span(5, 7)
),
(Instruction::jump(1, true), Span(10, 11)),
(
Instruction::call_native(0, NativeFunction::Panic, 0),
Span(12, 19)
),
(Instruction::r#return(false), Span(21, 21))
],
vec![ConcreteValue::Integer(1), ConcreteValue::Integer(2)],
vec![]
)),
);
assert_eq!(run(source), Ok(None));
}
#[test]
fn if_true() {
let source = "if 1 == 1 { panic() }";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::None)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(5, 7)
),
(Instruction::jump(1, true), Span(10, 11)),
(
Instruction::call_native(0, NativeFunction::Panic, 0),
Span(12, 19)
),
(Instruction::r#return(false), Span(21, 21))
],
vec![ConcreteValue::Integer(1)],
vec![]
)),
);
assert_eq!(
run(source),
Err(DustError::Runtime {
error: VmError::NativeFunction(NativeFunctionError::Panic {
message: None,
position: Span(12, 19)
}),
source
})
);
}

View File

@ -1,34 +0,0 @@
#[test]
fn if_true() {
let source = "if true && true { 42 } else { 0 }";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::None)
},
vec![
(
*Instruction::equal(true, 0, 0)
.set_b_is_constant()
.set_c_is_constant(),
Span(5, 7)
),
(Instruction::jump(1, true), Span(10, 11)),
(
Instruction::call_native(0, NativeFunction::Panic, 0),
Span(12, 19)
),
(Instruction::r#return(false), Span(21, 21))
],
vec![ConcreteValue::Integer(1)],
vec![]
)),
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Integer(42))),);
}

View File

@ -1,4 +1,5 @@
use dust_lang::*; use dust_lang::*;
use smallvec::smallvec;
#[test] #[test]
fn function() { fn function() {
@ -6,33 +7,28 @@ fn function() {
assert_eq!( assert_eq!(
run(source), run(source),
Ok(Some(ConcreteValue::Function(Chunk::with_data( Ok(Some(ConcreteValue::function(Chunk::with_data(
None, None,
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Function(FunctionType { return_type: Type::function(FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]), value_parameters: Some(smallvec![(0, Type::Integer), (1, Type::Integer)]),
return_type: Box::new(Type::Integer), return_type: Type::Integer,
})) })
}, },
vec![ vec![
( (
Instruction::add( Instruction::add(2, Argument::Register(0), Argument::Register(1)),
Destination::Register(2),
Argument::Local(0),
Argument::Local(1)
),
Type::Integer,
Span(30, 31) Span(30, 31)
), ),
(Instruction::r#return(true), Type::None, Span(35, 35)), (Instruction::r#return(true), Span(34, 35)),
], ],
vec![ConcreteValue::string("a"), ConcreteValue::string("b"),], vec![ConcreteValue::string("a"), ConcreteValue::string("b"),],
vec![ vec![
Local::new(0, Type::Integer, false, Scope::default()), Local::new(0, 0, false, Scope::default()),
Local::new(1, Type::Integer, false, Scope::default()) Local::new(1, 1, false, Scope::default())
] ]
)))) ))))
); );
@ -49,59 +45,34 @@ fn function_call() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Integer) return_type: Type::Integer
}, },
vec![ vec![
( (Instruction::load_constant(0, 0, false), Span(0, 35)),
Instruction::load_constant(Destination::Register(0), 0, false), (Instruction::load_constant(1, 1, false), Span(36, 37)),
Type::Function(FunctionType { (Instruction::load_constant(2, 2, false), Span(39, 40)),
type_parameters: None, (Instruction::call(3, Argument::Constant(0), 2), Span(35, 41)),
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]), (Instruction::r#return(true), Span(41, 41)),
return_type: Box::new(Type::Integer),
}),
Span(0, 36)
),
(
Instruction::load_constant(Destination::Register(1), 1, false),
Type::Integer,
Span(36, 37)
),
(
Instruction::load_constant(Destination::Register(2), 2, false),
Type::Integer,
Span(39, 40)
),
(
Instruction::call(Destination::Register(3), Argument::Constant(0), 2),
Type::Integer,
Span(35, 41)
),
(Instruction::r#return(true), Type::None, Span(41, 41)),
], ],
vec![ vec![
ConcreteValue::Function(Chunk::with_data( ConcreteValue::function(Chunk::with_data(
None, None,
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]), value_parameters: Some(smallvec![(0, Type::Integer), (1, Type::Integer)]),
return_type: Box::new(Type::Integer) return_type: Type::Integer
}, },
vec![ vec![
( (
Instruction::add( Instruction::add(2, Argument::Register(0), Argument::Register(1)),
Destination::Register(2),
Argument::Local(0),
Argument::Local(1)
),
Type::Integer,
Span(30, 31) Span(30, 31)
), ),
(Instruction::r#return(true), Type::None, Span(35, 36)), (Instruction::r#return(true), Span(34, 35)),
], ],
vec![ConcreteValue::string("a"), ConcreteValue::string("b"),], vec![ConcreteValue::string("a"), ConcreteValue::string("b"),],
vec![ vec![
Local::new(0, Type::Integer, false, Scope::default()), Local::new(0, 0, false, Scope::default()),
Local::new(1, Type::Integer, false, Scope::default()) Local::new(1, 1, false, Scope::default())
] ]
)), )),
ConcreteValue::Integer(1), ConcreteValue::Integer(1),
@ -125,63 +96,36 @@ fn function_declaration() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::None) return_type: Type::None
}, },
vec![ vec![
( (Instruction::load_constant(0, 0, false), Span(0, 40)),
Instruction::load_constant(Destination::Register(0), 0, false), (Instruction::r#return(false), Span(40, 40))
Type::Function(FunctionType {
type_parameters: None,
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]),
return_type: Box::new(Type::Integer),
}),
Span(0, 40)
),
(
Instruction::define_local(0, 0, false),
Type::None,
Span(3, 6)
),
(Instruction::r#return(false), Type::None, Span(40, 40))
], ],
vec![ vec![
ConcreteValue::Function(Chunk::with_data( ConcreteValue::function(Chunk::with_data(
Some("add".to_string()), Some("add".into()),
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]), value_parameters: Some(smallvec![(0, Type::Integer), (1, Type::Integer)]),
return_type: Box::new(Type::Integer) return_type: Type::Integer
}, },
vec![ vec![
( (
Instruction::add( Instruction::add(2, Argument::Register(0), Argument::Register(1)),
Destination::Register(2),
Argument::Local(0),
Argument::Local(1)
),
Type::Integer,
Span(35, 36) Span(35, 36)
), ),
(Instruction::r#return(true), Type::None, Span(40, 40)), (Instruction::r#return(true), Span(39, 40)),
], ],
vec![ConcreteValue::string("a"), ConcreteValue::string("b")], vec![ConcreteValue::string("a"), ConcreteValue::string("b")],
vec![ vec![
Local::new(0, Type::Integer, false, Scope::default()), Local::new(0, 0, false, Scope::default()),
Local::new(1, Type::Integer, false, Scope::default()) Local::new(1, 1, false, Scope::default())
] ]
)), )),
ConcreteValue::string("add"), ConcreteValue::string("add"),
], ],
vec![Local::new( vec![Local::new(1, 0, false, Scope::default(),),],
1,
Type::Function(FunctionType {
type_parameters: None,
value_parameters: Some(vec![(0, Type::Integer), (1, Type::Integer)]),
return_type: Box::new(Type::Integer),
}),
false,
Scope::default(),
),],
)), )),
); );

View File

@ -11,15 +11,11 @@ fn empty_list() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::List(Box::new(Type::Any))), return_type: Type::List(Box::new(Type::Any)),
}, },
vec![ vec![
( (Instruction::load_list(0, 0), Span(0, 2)),
Instruction::load_list(Destination::Register(0), 0), (Instruction::r#return(true), Span(2, 2)),
Type::List(Box::new(Type::Any)),
Span(0, 2)
),
(Instruction::r#return(true), Type::None, Span(2, 2)),
], ],
vec![], vec![],
vec![] vec![]
@ -40,30 +36,14 @@ fn list() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::List(Box::new(Type::Integer))), return_type: Type::List(Box::new(Type::Integer)),
}, },
vec![ vec![
( (Instruction::load_constant(0, 0, false), Span(1, 2)),
Instruction::load_constant(Destination::Register(0), 0, false), (Instruction::load_constant(1, 1, false), Span(4, 5)),
Type::Integer, (Instruction::load_constant(2, 2, false), Span(7, 8)),
Span(1, 2) (Instruction::load_list(3, 0), Span(0, 9)),
), (Instruction::r#return(true), Span(9, 9)),
(
Instruction::load_constant(Destination::Register(1), 1, false),
Type::Integer,
Span(4, 5)
),
(
Instruction::load_constant(Destination::Register(2), 2, false),
Type::Integer,
Span(7, 8)
),
(
Instruction::load_list(Destination::Register(3), 0),
Type::List(Box::new(Type::Integer)),
Span(0, 9)
),
(Instruction::r#return(true), Type::None, Span(9, 9)),
], ],
vec![ vec![
ConcreteValue::Integer(1), ConcreteValue::Integer(1),
@ -95,48 +75,25 @@ fn list_with_complex_expression() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::List(Box::new(Type::Integer))), return_type: Type::List(Box::new(Type::Integer)),
}, },
vec![ vec![
(Instruction::load_constant(0, 0, false), Span(1, 2)),
( (
Instruction::load_constant(Destination::Register(0), 0, false), Instruction::add(1, Argument::Constant(1), Argument::Constant(2)),
Type::Integer,
Span(1, 2)
),
(
Instruction::add(
Destination::Register(1),
Argument::Constant(1),
Argument::Constant(2)
),
Type::Integer,
Span(6, 7) Span(6, 7)
), ),
( (
Instruction::multiply( Instruction::multiply(2, Argument::Constant(3), Argument::Constant(4)),
Destination::Register(2),
Argument::Constant(3),
Argument::Constant(4)
),
Type::Integer,
Span(14, 15) Span(14, 15)
), ),
( (
Instruction::subtract( Instruction::subtract(3, Argument::Register(1), Argument::Register(2)),
Destination::Register(3),
Argument::Register(1),
Argument::Register(2)
),
Type::Integer,
Span(10, 11) Span(10, 11)
), ),
(Instruction::close(1, 3), Type::None, Span(17, 18)), (Instruction::close(1, 3), Span(17, 18)),
( (Instruction::load_list(4, 0), Span(0, 18)),
Instruction::load_list(Destination::Register(4), 0), (Instruction::r#return(true), Span(18, 18)),
Type::List(Box::new(Type::Integer)),
Span(0, 18)
),
(Instruction::r#return(true), Type::None, Span(18, 18)),
], ],
vec![ vec![
ConcreteValue::Integer(1), ConcreteValue::Integer(1),
@ -169,34 +126,17 @@ fn list_with_simple_expression() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::List(Box::new(Type::Integer))), return_type: Type::List(Box::new(Type::Integer)),
}, },
vec![ vec![
(Instruction::load_constant(0, 0, false), Span(1, 2)),
( (
Instruction::load_constant(Destination::Register(0), 0, false), Instruction::add(1, Argument::Constant(1), Argument::Constant(2)),
Type::Integer,
Span(1, 2)
),
(
Instruction::add(
Destination::Register(1),
Argument::Constant(1),
Argument::Constant(2)
),
Type::Integer,
Span(6, 7) Span(6, 7)
), ),
( (Instruction::load_constant(2, 3, false), Span(11, 12)),
Instruction::load_constant(Destination::Register(2), 3, false), (Instruction::load_list(3, 0), Span(0, 13)),
Type::Integer, (Instruction::r#return(true), Span(13, 13)),
Span(11, 12)
),
(
Instruction::load_list(Destination::Register(3), 0),
Type::List(Box::new(Type::Integer)),
Span(0, 13)
),
(Instruction::r#return(true), Type::None, Span(13, 13)),
], ],
vec![ vec![
ConcreteValue::Integer(1), ConcreteValue::Integer(1),

View File

@ -1,160 +0,0 @@
use dust_lang::*;
#[test]
fn and() {
let source = "true && false";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Boolean),
},
vec![
(
Instruction::load_boolean(Destination::Register(0), true, false),
Type::Boolean,
Span(0, 4)
),
(
Instruction::test(Argument::Register(0), true),
Type::None,
Span(5, 7)
),
(Instruction::jump(1, true), Type::None, Span(5, 7)),
(
Instruction::load_boolean(Destination::Register(1), false, false),
Type::Boolean,
Span(8, 13)
),
(Instruction::r#return(true), Type::None, Span(13, 13)),
],
vec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Boolean(false))));
}
#[test]
fn or() {
let source = "true || false";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Boolean),
},
vec![
(
Instruction::load_boolean(Destination::Register(0), true, false),
Type::Boolean,
Span(0, 4)
),
(
Instruction::test(Argument::Register(0), false),
Type::None,
Span(5, 7)
),
(Instruction::jump(1, true), Type::None, Span(5, 7)),
(
Instruction::load_boolean(Destination::Register(1), false, false),
Type::Boolean,
Span(8, 13)
),
(Instruction::r#return(true), Type::None, Span(13, 13)),
],
vec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Boolean(true))));
}
#[test]
fn and_and_or() {
let source = "let a = true; let b = true; let c = false; a && b || c";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Box::new(Type::Boolean),
},
vec![
(
Instruction::load_boolean(Destination::Register(0), true, false),
Type::Boolean,
Span(8, 12)
),
(
Instruction::define_local(0, 0, false),
Type::None,
Span(4, 5)
),
(
Instruction::load_boolean(Destination::Register(1), true, false),
Type::Boolean,
Span(22, 26)
),
(
Instruction::define_local(1, 1, false),
Type::None,
Span(18, 19)
),
(
Instruction::load_boolean(Destination::Register(2), false, false),
Type::Boolean,
Span(36, 41)
),
(
Instruction::define_local(2, 2, false),
Type::None,
Span(32, 33)
),
(
Instruction::test(Argument::Local(0), true),
Type::None,
Span(45, 47)
),
(Instruction::jump(1, true), Type::None, Span(45, 47)),
(
Instruction::test(Argument::Local(1), false),
Type::None,
Span(50, 52)
),
(Instruction::jump(1, true), Type::None, Span(50, 52)),
(
Instruction::get_local(Destination::Register(3), 2),
Type::Boolean,
Span(53, 54)
),
(Instruction::r#return(true), Type::None, Span(54, 54)),
],
vec![
ConcreteValue::string("a"),
ConcreteValue::string("b"),
ConcreteValue::string("c")
],
vec![
Local::new(0, Type::Boolean, false, Scope::default()),
Local::new(1, Type::Boolean, false, Scope::default()),
Local::new(2, Type::Boolean, false, Scope::default())
]
))
);
assert_eq!(run(source), Ok(Some(ConcreteValue::Boolean(true))));
}

View File

@ -0,0 +1,146 @@
use dust_lang::*;
use smallvec::smallvec;
#[test]
fn true_and_true() {
let source = "true && true";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, true, false),
Instruction::test(0, true),
Instruction::jump(1, true),
Instruction::load_boolean(1, true, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 4),
Span(5, 7),
Span(5, 7),
Span(8, 12),
Span(12, 12),
],
smallvec![],
smallvec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(Value::boolean(true))));
}
#[test]
fn false_and_false() {
let source = "false && false";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, false, false),
Instruction::test(0, true),
Instruction::jump(1, true),
Instruction::load_boolean(1, false, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 5),
Span(6, 8),
Span(6, 8),
Span(9, 14),
Span(14, 14),
],
smallvec![],
smallvec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(Value::boolean(false))));
}
#[test]
fn false_and_true() {
let source = "false && true";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, false, false),
Instruction::test(0, true),
Instruction::jump(1, true),
Instruction::load_boolean(1, true, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 5),
Span(6, 8),
Span(6, 8),
Span(9, 13),
Span(13, 13)
],
smallvec![],
smallvec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(Value::boolean(false))));
}
#[test]
fn true_and_false() {
let source = "true && false";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, true, false),
Instruction::test(0, true),
Instruction::jump(1, true),
Instruction::load_boolean(1, false, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 4),
Span(5, 7),
Span(5, 7),
Span(8, 13),
Span(13, 13)
],
smallvec![],
smallvec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(Value::boolean(false))));
}

View File

@ -0,0 +1,42 @@
use dust_lang::*;
use smallvec::smallvec;
#[test]
fn true_and_true_and_true() {
let source = "true && true && true";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, true, false),
Instruction::test(0, true),
Instruction::jump(1, true),
Instruction::load_boolean(1, true, false),
Instruction::test(1, true),
Instruction::jump(1, true),
Instruction::load_boolean(2, true, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 4),
Span(5, 7),
Span(5, 7),
Span(8, 12),
Span(13, 15),
Span(13, 15),
Span(16, 20),
Span(20, 20)
],
smallvec![],
smallvec![],
vec![],
))
);
}

View File

@ -0,0 +1,38 @@
use dust_lang::*;
use smallvec::smallvec;
#[test]
fn true_or_false() {
let source = "true || false";
assert_eq!(
compile(source),
Ok(Chunk::with_data(
None,
FunctionType {
type_parameters: None,
value_parameters: None,
return_type: Type::Boolean,
},
smallvec![
Instruction::load_boolean(0, true, false),
Instruction::test(0, false),
Instruction::jump(1, true),
Instruction::load_boolean(1, false, false),
Instruction::r#return(true),
],
smallvec![
Span(0, 4),
Span(5, 7),
Span(5, 7),
Span(8, 13),
Span(13, 13),
],
smallvec![],
smallvec![],
vec![]
))
);
assert_eq!(run(source), Ok(Some(Value::boolean(true))));
}

View File

@ -11,41 +11,22 @@ fn r#while() {
FunctionType { FunctionType {
type_parameters: None, type_parameters: None,
value_parameters: None, value_parameters: None,
return_type: Box::new(Type::Integer), return_type: Type::Integer,
}, },
vec![ vec![
(Instruction::load_constant(0, 0, false), Span(12, 13)),
( (
Instruction::load_constant(Destination::Register(0), 0, false), Instruction::less(0, true, Argument::Register(0), Argument::Constant(2)),
Type::Integer,
Span(12, 13)
),
(
Instruction::define_local(0, 0, true),
Type::None,
Span(8, 9)
),
(
Instruction::less(true, Argument::Local(0), Argument::Constant(2)),
Type::None,
Span(23, 24) Span(23, 24)
), ),
(Instruction::jump(2, true), Type::None, Span(41, 42)), (Instruction::jump(2, true), Span(41, 42)),
( (
Instruction::add( Instruction::add(0, Argument::Register(0), Argument::Constant(3)),
Destination::Local(0),
Argument::Local(0),
Argument::Constant(3)
),
Type::Integer,
Span(35, 36) Span(35, 36)
), ),
(Instruction::jump(3, false), Type::None, Span(41, 42)), (Instruction::jump(3, false), Span(41, 42)),
( (Instruction::get_local(1, 0), Span(41, 42)),
Instruction::get_local(Destination::Register(1), 0), (Instruction::r#return(true), Span(42, 42)),
Type::Integer,
Span(41, 42)
),
(Instruction::r#return(true), Type::None, Span(42, 42)),
], ],
vec![ vec![
ConcreteValue::Integer(0), ConcreteValue::Integer(0),
@ -53,7 +34,7 @@ fn r#while() {
ConcreteValue::Integer(5), ConcreteValue::Integer(5),
ConcreteValue::Integer(1), ConcreteValue::Integer(1),
], ],
vec![Local::new(1, Type::Integer, true, Scope::default())] vec![Local::new(1, 0, true, Scope::default())]
)), )),
); );

Some files were not shown because too many files have changed in this diff Show More