1
0

Write docs; Improve errors

This commit is contained in:
Jeff 2024-12-10 10:03:11 -05:00
parent 755cc866c7
commit 3e852cf606
10 changed files with 545 additions and 501 deletions

270
README.md
View File

@ -2,17 +2,14 @@
A programming language that is **fast**, **safe** and **easy to use**.
Dust has a simple, expressive syntax that is easy to read and write. This includes a powerful yet
syntactically modest type system with extensive inference capabilities.
Dust's syntax, safety features and evaluation model are inspired by Rust. The instruction set,
optimization strategies and virtual machine are inspired by Lua and academic research in the field
(see the [Inspiration](README#Inspiration). Unlike Rust and most other compiled languages, Dust has
a very low time to execution. Unlike Lua and most other interpreted languages, Dust enforces static
typing during compilation, with a simple yet powerful type system that enhances clarity and prevents
bugs.
The syntax, safety features and evaluation model are inspired by Rust. The instruction set,
optimization strategies and virtual machine are inspired by Lua and academic research (see the
[Inspiration][] section below). Unlike Rust and other compiled languages, Dust has a very low time
to execution. Simple programs compile in milliseconds, even on modest hardware. Unlike Lua and most
other interpreted languages, Dust is type-safe, with a simple yet powerful type system that enhances
clarity and prevent bugs.
```dust
```rust
write_line("Enter your name...")
let name = read_line()
@ -20,15 +17,157 @@ let name = read_line()
write_line("Hello " + name + "!")
```
## Overview
```rust
fn fib (n: int) -> int {
if n <= 0 { return 0 }
if n == 1 { return 1 }
fib(n - 1) + fib(n - 2)
}
write_line(fib(25))
```
Dust uses the same library for error reporting as Rust, which provides ample opportunities to show
the user where they went wrong and how to fix it. Helpful error messages are a high priority and the
language will not be considered stable until they are consistently informative and actionable.
```
error: Compilation Error: Cannot add these types
|
1 | 40 + 2.0
| -- info: A value of type "int" was used here.
|
1 | 40 + 2.0
| --- info: A value of type "float" was used here.
|
1 | 40 + 2.0
| -------- help: Type "int" cannot be added to type "float". Try converting one of the values to the other type.
|
```
## Project Status
**Dust is under active development and is not yet ready for general use.** Dust is an ambitious
project that acts as a continuous experiment in language design. Features may be redesigned and
reimplemented at will when they do not meet the project's performance and usability goals. This
approach maximizes the development experience as a learning opportunity and enforces a high standard
of quality but slows down the process of delivering features to users.
**Dust is under active development and is not yet ready for general use.**
**Features discussed in this README may be unimplemented, partially implemented, temporarily removed
or only available on a seperate branch.**
Dust is an ambitious project that acts as a continuous experiment in language design. Features may
be redesigned and reimplemented at will when they do not meet the project's performance or
usability goals. This approach maximizes the development experience as a learning opportunity and
enforces a high standard of quality but slows down the process of delivering features to users.
Eventually, Dust will reach a stable release and will be ready for general use. As the project
approaches this milestone, the experimental nature of the project will be reduced and a replaced
with a focus on stability and improvement.
## Language Overview
### Syntax
Dust belongs to the C-like family of languages, with an imperative syntax that will be familiar to
many programmers. Dust code looks a lot like Ruby, JavaScript, TypeScript and other members of the
family but Rust is its primary point of reference for syntax. Rust was chosen as a syntax model
because its imperative code is *obvious* and *familiar*. Those qualities are aligned with Dust's
emphasis on safety and usability. However, some differences exist because Dust is a simpler language
that can tolerate more relaxed syntax. For example, Dust has more relaxed rules about semicolons:
they can be used to suppress values (like in Rust) but are not required at the end of every
statement.
In this example, these semicolons are optional. Because these `let` statements do not return a
value, the semicolons have nothing to suppress and are ignored.
```dust
let a = 40;
let b = 2;
write_line("The answer is ", a + b);
```
One could write the above program without any semicolons at all.
```dust
let x = 10
let y = 3
write_line("The remainder is ", x % y)
```
The next example produces a compiler error because the `if` block returns a value of type `int` but
the `else` block does not return a value at all. Dust does not allow branches of the same `if/else`
statement to return different types of values. In this case, adding a semicolon after the `777`
expression fixes the error by supressing the value.
```dust
let input = read_line()
if input == "42" {
write_line("You got it! Here's your reward.")
777
} else {
write_line("That is not the answer.")
}
```
Remember that even if some syntax is optional, that does not mean it should always be omitted or is
not useful. Aside from their practical use, semicolons provide a visual barrier between statements
written on the same line. Dust's design philosophy is to provide a balance between strictness and
expressiveness so that the language is applicable to a wide range of use cases. A web server with a
team of developers may prefer a more long-form style of code with lots of line breaks while a user
writing Dust on the command line may prefer a more terse style without sacrificing readability.
```dust
let a = 0; let b = 1; let c = 2; let list = [a, b, c];
write_line("Here's our list: ", list)
```
### Safety
#### Type System
All variables have a type that is established when the variable is declared. This usually does not
require that the type be explicitly stated, Dust can infer the type from the value. Types are also
associated with the arms of `if/else` statements and the return values of functions, which prevents
different runtime scenarios from producing different types of values.
#### Null-Free
There is no `null` or `undefined` value in Dust. All values and variables must be initialized to one
of the supported value types. This eliminates a whole class of bugs that permeate many other
languages. "I call it my billion-dollar mistake. It was the invention of the null reference in
1965." - Tony Hoare
Dust *does* have a `none` type, which should not be confused for being `null`-like. Like the `()` or
"unit" type in Rust, `none` exists as a type but not as a value. It indicates the lack of a value
from a function, expression or statement. A variable cannot be assigned to `none`.
#### Memory Safety
<!-- TODO: Introduce Dust's approach to memory management and garbage collection. -->
### Values, Variables and Types
Dust supports the following basic values:
- Boolean: `true` or `false`
- Byte: An unsigned 8-bit integer
- Character: A Unicode scalar value
- Float: A 64-bit floating-point number
- Function: An executable chunk of code
- Integer: A signed 64-bit integer
- String: A UTF-8 encoded string
Dust's "basic" values are conceptually similar because they are singular as opposed to composite.
Most of these values are stored on the stack but some are heap-allocated. A Dust string is a
sequence of bytes that are encoded in UTF-8. Even though it could be seen as a composite of byte
values, strings are considered "basic" because they are parsed directly from tokens and behave as
singular values. Shorter strings are stored on the stack while longer strings are heap-allocated.
Dust offers built-in native functions that can manipulate strings by accessing their bytes or
reading them as a sequence of characters.
<!-- TODO: Describe Dust's composite values -->
## Feature Progress
@ -72,6 +211,7 @@ maintain a docket of what is being worked on, what is coming next and what can b
- Types
- [X] Basic types for each kind of basic value
- [X] Generalized types: `num`, `any`, `none`
- [ ] Type conversion (safe, explicit and coercion-free)
- [ ] `struct` types
- [ ] `enum` types
- [ ] Type aliases
@ -92,11 +232,29 @@ maintain a docket of what is being worked on, what is coming next and what can b
- [ ] Type arguments
- Control Flow
- [X] If/Else
- [ ] Match
- [ ] Loops
- [ ] `for`
- [ ] `loop`
- [X] `while`
- [ ] Match
- Native Functions
- Assertions
- [X] `assert`
- [ ] `assert_eq`
- [ ] `assert_ne`
- [ ] `panic`
- I/O
- [ ] `read`
- [X] `read_line`
- [X] `write`
- [X] `write_line`
- String Functions
- List Functions
- Map Functions
- Math Functions
- Filesystem Functions
- Network Functions
- System Functions
## Implementation
@ -107,6 +265,16 @@ code and check the compiled chunk, then run the source and check the output of t
It is important to maintain a high level of quality by writing meaningful tests and preferring to
compile and run programs in an optimal way before adding new features.
### Command Line Interface
Dust's command line interface and developer experience are inspired by tools like Bun and especially
Cargo, the Rust package manager that includes everything from project creation to documentation
generation to code formatting to much more. Dust's CLI has started by exposing the most imporant
features for debugging and developing the language itself. Tokenization, compiling, disassembling
and running Dust code are currently supported. The CLI will eventually support a REPL, code
formatting, linting and other features that enhance the development experience and make Dust more
fun and easy to use.
### Lexer and Tokens
The lexer emits tokens from the source code. Dust makes extensive use of Rust's zero-copy
@ -128,21 +296,23 @@ sequence of tokens into a chunk. Each token is given a precedence and may have a
parser. The parsers are just functions that modify the compiler and its output. For example, when
the compiler encounters a boolean token, its prefix parser is the `parse_boolean` function, which
emits a `LoadBoolean` instruction. An integer token's prefix parser is `parse_integer`, which emits
a `LoadConstant` instruction and adds the integer to the constant list. Tokens with infix parsers
include the math operators, which emit `Add`, `Subtract`, `Multiply`, `Divide`, and `Modulo`
a `LoadConstant` instruction and adds the integer to the constants list. Tokens with infix parsers
include the math operators, which emit `Add`, `Subtract`, `Multiply`, `Divide`, `Modulo` and `Power`
instructions.
Functions are compiled into their own chunks, which are stored in the constant list. A function's
arguments are stored in the locals list. The VM must later bind the arguments to runtime values by
assigning each argument a register and associating the register with the local.
arguments are stored in its locals list. Before the function is run, the VM must bind the arguments
to values by filling locals' corresponding registers. Instead of copying the arguments, the VM uses
a pointer to one of the parent's registers or constants.
#### Optimizing
When generating instructions for a register-based virtual machine, there are opportunities to
optimize the generated code by using fewer instructions or fewer registers. While it is best to
output optimal code in the first place, it is not always possible. Dust's compiler modifies the
instruction list during parsing to apply optimizations before the chunk is completed. There is no
separate optimization pass, and the compiler cannot be run in a mode that disables optimizations.
output optimal code in the first place, it is not always possible. Dust's uses a single-pass
compiler and therefore applies optimizations immeadiately after the opportunity becomes available.
There is no separate optimization pass and the compiler cannot be run in a mode that disables
optimizations.
#### Type Checking
@ -153,6 +323,8 @@ from instruction arguments, the compiler also checks the types of function argum
of `if`/`else` statements.
The compiler always checks types on the fly, so there is no need for a separate type-checking pass.
Type information is removed from the instructions list before the chunk is created, so the VM (which
is entirely type-agnostic) never sees it.
### Instructions
@ -198,53 +370,60 @@ because of the 5 bit format.
##### Arithmetic
Arithmetic instructions use every field except for D. The A field is the destination register, the B
Arithmetic instructions use the A, B and C fields. The A field is the destination register, the B
and C fields are the arguments, and the flags indicate whether the arguments are constants.
- ADD: Adds two values and stores the result in a register. Unlike the other arithmetic operations,
the ADD instruction can also be used to concatenate strings and characters.
the ADD instruction can also be used to concatenate strings and/or characters. Characters are the
only type of value that can perform a kind of implicit conversion. Although the character itself
is not converted, its underlying bytes are concatenated to the string.
- SUBTRACT: Subtracts one argument from another and stores the result in a register.
- MULTIPLY: Multiplies two arguments and stores the result in a register.
- MULTIPLY: Multiplies one argument by another and stores the result in a register.
- DIVIDE: Divides one value by another and stores the result in a register.
- MODULO: Calculates the division remainder of two values and stores the result in a register.
- POWER: Raises one value to the power of another and stores the result in a register.
##### Logic
##### Logic and Control Flow
Logic instructions work differently from arithmetic and comparison instructions, but they are still
essentially binary operations with a left and a right argument. Rather than performing some
calculation and storing a result, the logic instructions perform a check on the left-hand argument
and, based on the result, either skip the right-hand argument or allow it to be executed. A `TEST`
is always followed by a `JUMP`. If the left argument passes the test (a boolean equality check), the
`JUMP` instruction is skipped and the right argument is executed. If the left argument fails the
test, the `JUMP` is not skipped and it jumps past the right argument.
essentially binary operations with a left and a right argument. These areguments, however, are other
instructions. This is reminiscent of a stack-based virtual machine in which the arguments are found
in the stack rather than having their location encoded in the instruction. The logic instructions
perform a check on the left-hand argument and, based on the result, either skip the right-hand
argument or allow it to be executed. A `TEST` is always followed by a `JUMP`. If the left argument
passes the test (a boolean equality check), the `JUMP` instruction is skipped and the right argument
is executed. If the left argument fails the test, the `JUMP` is not skipped and it jumps past the
right argument.
- TEST
- TEST_SET
<!-- TODO: Discuss control flow using TEST -->
##### Comparison
<!-- TODO -->
- EQUAL
- LESS
- LESS_EQUAL
##### Unary operations
<!-- TODO -->
- NEGATE
- NOT
##### Execution
<!-- TODO -->
- CALL
- CALL_NATIVE
- JUMP
- RETURN
The A, B, and C
fields are used for usually used as indexes into the constant list or stack, but they can also hold
other information, like the number of arguments for a function call.
### Virtual Machine
The virtual machine is simple and efficient. It uses a stack of registers, which can hold values or
@ -288,14 +467,17 @@ on Lua optimizations covered in this paper.
Liup was helpful for a quick yet efficient primer on getting stack-based and register-based virtual
machines up and running. The included code examples show how to implement both types of VMs in C.
The performance comparison between the two types of VMs is worth reading for anyone who is trying to
choose between the two. Some of the benchmarks described in the paper inspired similar benchmarks
choose between the two[^1]. Some of the benchmarks described in the paper inspired similar benchmarks
used in this project to compare Dust to other languages.
## License
Dust is licensed under the GNU General Public License v3.0. See the `LICENSE` file for details.
[Crafting Interpreters]: https://craftinginterpreters.com/
[The Implementation of Lua 5.0]: https://www.lua.org/doc/jucs05.pdf
[A No-Frills Introduction to Lua 5.1 VM Instructions]: https://www.mcours.net/cours/pdf/hasclic3/hasssclic818.pdf
[A Performance Survey on Stack-based and Register-based Virtual Machines^3]: https://arxiv.org/abs/1611.00467
## References
[^1]: [Crafting Interpreters](https://craftinginterpreters.com/)
[^2]: [The Implementation of Lua 5.0](https://www.lua.org/doc/jucs05.pdf)
[^3]: [A No-Frills Introduction to Lua 5.1 VM Instructions](https://www.mcours.net/cours/pdf/hasclic3/hasssclic818.pdf)
[^4]: [A Performance Survey on Stack-based and Register-based Virtual Machines](https://arxiv.org/abs/1611.00467)
[^5]: [List of C-family programming languages](https://en.wikipedia.org/wiki/List_of_C-family_programming_languages)

View File

@ -4,7 +4,7 @@ use std::{fs::read_to_string, path::PathBuf};
use clap::{Args, Parser};
use colored::Colorize;
use dust_lang::{compile, lex, run, CompileError, DustError, Lexer, Span, Token};
use dust_lang::{compile, run, CompileError, DustError, Lexer, Span, Token};
use log::{Level, LevelFilter};
#[derive(Parser)]

View File

@ -0,0 +1,255 @@
use std::num::{ParseFloatError, ParseIntError};
use smallvec::{smallvec, SmallVec};
use crate::{AnnotatedError, LexError, Scope, Span, TokenKind, TokenOwned, Type, TypeConflict};
/// Compilation errors
#[derive(Clone, Debug, PartialEq)]
pub enum CompileError {
// Token errors
ExpectedToken {
expected: TokenKind,
found: TokenOwned,
position: Span,
},
ExpectedTokenMultiple {
expected: &'static [TokenKind],
found: TokenOwned,
position: Span,
},
// Parsing errors
CannotChainComparison {
position: Span,
},
ExpectedExpression {
found: TokenOwned,
position: Span,
},
ExpectedFunction {
found: TokenOwned,
actual_type: Type,
position: Span,
},
ExpectedFunctionType {
found: Type,
position: Span,
},
InvalidAssignmentTarget {
found: TokenOwned,
position: Span,
},
UnexpectedReturn {
position: Span,
},
// Variable errors
CannotMutateImmutableVariable {
identifier: String,
position: Span,
},
ExpectedMutableVariable {
found: TokenOwned,
position: Span,
},
UndeclaredVariable {
identifier: String,
position: Span,
},
VariableOutOfScope {
identifier: String,
variable_scope: Scope,
access_scope: Scope,
position: Span,
},
// Type errors
CannotAddType {
argument_type: Type,
position: Span,
},
CannotAddArguments {
left_type: Type,
left_position: Span,
right_type: Type,
right_position: Span,
},
CannotDivideType {
argument_type: Type,
position: Span,
},
CannotDivideArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotModuloType {
argument_type: Type,
position: Span,
},
CannotModuloArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotMultiplyType {
argument_type: Type,
position: Span,
},
CannotMultiplyArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotSubtractType {
argument_type: Type,
position: Span,
},
CannotSubtractArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotResolveRegisterType {
register_index: usize,
position: Span,
},
CannotResolveVariableType {
identifier: String,
position: Span,
},
IfElseBranchMismatch {
conflict: TypeConflict,
position: Span,
},
IfMissingElse {
position: Span,
},
ListItemTypeConflict {
conflict: TypeConflict,
position: Span,
},
ReturnTypeConflict {
conflict: TypeConflict,
position: Span,
},
// Chunk errors
ConstantIndexOutOfBounds {
index: usize,
position: Span,
},
InstructionIndexOutOfBounds {
index: usize,
position: Span,
},
LocalIndexOutOfBounds {
index: usize,
position: Span,
},
// Wrappers around foreign errors
Lex(LexError),
ParseFloatError {
error: ParseFloatError,
position: Span,
},
ParseIntError {
error: ParseIntError,
position: Span,
},
}
impl CompileError {}
impl AnnotatedError for CompileError {
fn title() -> &'static str {
"Compilation Error"
}
fn description(&self) -> &'static str {
match self {
Self::CannotAddArguments { .. } => "Cannot add these types",
Self::CannotAddType { .. } => "Cannot add to this type",
Self::CannotChainComparison { .. } => "Cannot chain comparison operations",
Self::CannotDivideArguments { .. } => "Cannot divide these types",
Self::CannotDivideType { .. } => "Cannot divide this type",
Self::CannotModuloArguments { .. } => "Cannot modulo these types",
Self::CannotModuloType { .. } => "Cannot modulo this type",
Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable",
Self::CannotMultiplyArguments { .. } => "Cannot multiply these types",
Self::CannotMultiplyType { .. } => "Cannot multiply this type",
Self::CannotResolveRegisterType { .. } => "Cannot resolve register type",
Self::CannotResolveVariableType { .. } => "Cannot resolve type",
Self::CannotSubtractType { .. } => "Cannot subtract from this type",
Self::CannotSubtractArguments { .. } => "Cannot subtract these types",
Self::ConstantIndexOutOfBounds { .. } => "Constant index out of bounds",
Self::ExpectedExpression { .. } => "Expected an expression",
Self::ExpectedFunction { .. } => "Expected a function",
Self::ExpectedFunctionType { .. } => "Expected a function type",
Self::ExpectedMutableVariable { .. } => "Expected a mutable variable",
Self::ExpectedToken { .. } => "Expected a specific token",
Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens",
Self::IfElseBranchMismatch { .. } => "Type mismatch in if/else branches",
Self::IfMissingElse { .. } => "If statement missing else branch",
Self::InstructionIndexOutOfBounds { .. } => "Instruction index out of bounds",
Self::InvalidAssignmentTarget { .. } => "Invalid assignment target",
Self::Lex(error) => error.description(),
Self::ListItemTypeConflict { .. } => "List item type conflict",
Self::LocalIndexOutOfBounds { .. } => "Local index out of bounds",
Self::ParseFloatError { .. } => "Failed to parse float",
Self::ParseIntError { .. } => "Failed to parse integer",
Self::ReturnTypeConflict { .. } => "Return type conflict",
Self::UndeclaredVariable { .. } => "Undeclared variable",
Self::UnexpectedReturn { .. } => "Unexpected return",
Self::VariableOutOfScope { .. } => "Variable out of scope",
}
}
fn detail_snippets(&self) -> SmallVec<[(String, Span); 2]> {
match self {
Self::CannotAddArguments {
left_type,
left_position,
right_type,
right_position,
} => {
smallvec![
(
format!("A value of type \"{left_type}\" was used here."),
*left_position
),
(
format!("A value of type \"{right_type}\" was used here."),
*right_position
)
]
}
_ => todo!(),
}
}
fn help_snippets(&self) -> SmallVec<[(String, Span); 2]> {
match self {
Self::CannotAddArguments {
left_type,
left_position,
right_type,
right_position,
} => {
smallvec![(
format!("Type \"{left_type}\" cannot be added to type \"{right_type}\". Try converting one of the values to the other type."),
Span(left_position.0, right_position.1)
)]
}
_ => todo!(),
}
}
}
impl From<LexError> for CompileError {
fn from(error: LexError) -> Self {
Self::Lex(error)
}
}

View File

@ -4,12 +4,14 @@
//! - [`compile`] borrows a string and returns a chunk, handling the entire compilation process and
//! turning any resulting [`ComplileError`] into a [`DustError`].
//! - [`Compiler`] uses a lexer to get tokens and assembles a chunk.
mod error;
mod optimize;
pub use error::CompileError;
use std::{
fmt::{self, Display, Formatter},
mem::replace,
num::{ParseFloatError, ParseIntError},
};
use colored::Colorize;
@ -21,9 +23,8 @@ use crate::{
Call, CallNative, Close, GetLocal, Jump, LoadConstant, LoadList, LoadSelf, Move, Negate,
Not, Return, SetLocal, Test,
},
AnnotatedError, Argument, Chunk, ConcreteValue, DustError, DustString, FunctionType,
Instruction, LexError, Lexer, Local, NativeFunction, Operation, Scope, Span, Token, TokenKind,
TokenOwned, Type, TypeConflict,
Argument, Chunk, ConcreteValue, DustError, DustString, FunctionType, Instruction, Lexer, Local,
NativeFunction, Operation, Scope, Span, Token, TokenKind, Type,
};
/// Compiles the input and returns a chunk.
@ -1755,8 +1756,9 @@ impl<'src> Compiler<'src> {
} else {
Err(CompileError::CannotAddArguments {
left_type: left.clone(),
left_position: *left_position,
right_type: right.clone(),
position: Span(left_position.0, right_position.1),
right_position: *right_position,
})
}
}
@ -2204,319 +2206,3 @@ impl From<&Token<'_>> for ParseRule<'_> {
}
}
}
/// Compilation errors
#[derive(Clone, Debug, PartialEq)]
pub enum CompileError {
// Token errors
ExpectedToken {
expected: TokenKind,
found: TokenOwned,
position: Span,
},
ExpectedTokenMultiple {
expected: &'static [TokenKind],
found: TokenOwned,
position: Span,
},
// Parsing errors
CannotChainComparison {
position: Span,
},
ExpectedExpression {
found: TokenOwned,
position: Span,
},
ExpectedFunction {
found: TokenOwned,
actual_type: Type,
position: Span,
},
ExpectedFunctionType {
found: Type,
position: Span,
},
InvalidAssignmentTarget {
found: TokenOwned,
position: Span,
},
UnexpectedReturn {
position: Span,
},
// Variable errors
CannotMutateImmutableVariable {
identifier: String,
position: Span,
},
ExpectedMutableVariable {
found: TokenOwned,
position: Span,
},
UndeclaredVariable {
identifier: String,
position: Span,
},
VariableOutOfScope {
identifier: String,
variable_scope: Scope,
access_scope: Scope,
position: Span,
},
// Type errors
CannotAddType {
argument_type: Type,
position: Span,
},
CannotAddArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotDivideType {
argument_type: Type,
position: Span,
},
CannotDivideArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotModuloType {
argument_type: Type,
position: Span,
},
CannotModuloArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotMultiplyType {
argument_type: Type,
position: Span,
},
CannotMultiplyArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotSubtractType {
argument_type: Type,
position: Span,
},
CannotSubtractArguments {
left_type: Type,
right_type: Type,
position: Span,
},
CannotResolveRegisterType {
register_index: usize,
position: Span,
},
CannotResolveVariableType {
identifier: String,
position: Span,
},
IfElseBranchMismatch {
conflict: TypeConflict,
position: Span,
},
IfMissingElse {
position: Span,
},
ListItemTypeConflict {
conflict: TypeConflict,
position: Span,
},
ReturnTypeConflict {
conflict: TypeConflict,
position: Span,
},
// Chunk errors
ConstantIndexOutOfBounds {
index: usize,
position: Span,
},
InstructionIndexOutOfBounds {
index: usize,
position: Span,
},
LocalIndexOutOfBounds {
index: usize,
position: Span,
},
// Wrappers around foreign errors
Lex(LexError),
ParseFloatError {
error: ParseFloatError,
position: Span,
},
ParseIntError {
error: ParseIntError,
position: Span,
},
}
impl AnnotatedError for CompileError {
fn title() -> &'static str {
"Compilation Error"
}
fn description(&self) -> &'static str {
match self {
Self::CannotAddArguments { .. } => "Cannot add these types",
Self::CannotAddType { .. } => "Cannot add to this type",
Self::CannotChainComparison { .. } => "Cannot chain comparison operations",
Self::CannotDivideArguments { .. } => "Cannot divide these types",
Self::CannotDivideType { .. } => "Cannot divide this type",
Self::CannotModuloArguments { .. } => "Cannot modulo these types",
Self::CannotModuloType { .. } => "Cannot modulo this type",
Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable",
Self::CannotMultiplyArguments { .. } => "Cannot multiply these types",
Self::CannotMultiplyType { .. } => "Cannot multiply this type",
Self::CannotResolveRegisterType { .. } => "Cannot resolve register type",
Self::CannotResolveVariableType { .. } => "Cannot resolve type",
Self::CannotSubtractType { .. } => "Cannot subtract from this type",
Self::CannotSubtractArguments { .. } => "Cannot subtract these types",
Self::ConstantIndexOutOfBounds { .. } => "Constant index out of bounds",
Self::ExpectedExpression { .. } => "Expected an expression",
Self::ExpectedFunction { .. } => "Expected a function",
Self::ExpectedFunctionType { .. } => "Expected a function type",
Self::ExpectedMutableVariable { .. } => "Expected a mutable variable",
Self::ExpectedToken { .. } => "Expected a specific token",
Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens",
Self::IfElseBranchMismatch { .. } => "Type mismatch in if/else branches",
Self::IfMissingElse { .. } => "If statement missing else branch",
Self::InstructionIndexOutOfBounds { .. } => "Instruction index out of bounds",
Self::InvalidAssignmentTarget { .. } => "Invalid assignment target",
Self::Lex(error) => error.description(),
Self::ListItemTypeConflict { .. } => "List item type conflict",
Self::LocalIndexOutOfBounds { .. } => "Local index out of bounds",
Self::ParseFloatError { .. } => "Failed to parse float",
Self::ParseIntError { .. } => "Failed to parse integer",
Self::ReturnTypeConflict { .. } => "Return type conflict",
Self::UndeclaredVariable { .. } => "Undeclared variable",
Self::UnexpectedReturn { .. } => "Unexpected return",
Self::VariableOutOfScope { .. } => "Variable out of scope",
}
}
fn details(&self) -> Option<String> {
match self {
Self::CannotMutateImmutableVariable { identifier, .. } => {
Some(format!("{identifier} is immutable"))
}
Self::ExpectedExpression { found, .. } => Some(format!("Found {found}")),
Self::ExpectedFunction { found, actual_type, .. } => {
Some(format!("Expected \"{found}\" to be a function but it has type {actual_type}"))
}
Self::ExpectedFunctionType { found, .. } => {
Some(format!("Expected a function type but found {found}"))
}
Self::ExpectedToken {
expected, found, ..
} => Some(format!("Expected {expected} but found {found}")),
Self::ExpectedTokenMultiple {
expected, found, ..
} => {
let mut details = String::from("Expected");
for (index, token) in expected.iter().enumerate() {
details.push_str(&format!(" {token}"));
if index < expected.len() - 2 {
details.push_str(", ");
}
if index == expected.len() - 2 {
details.push_str(" or");
}
}
details.push_str(&format!(" but found {found}"));
Some(details)
}
Self::ExpectedMutableVariable { found, .. } => Some(format!("Found {found}")),
Self::IfElseBranchMismatch {
conflict: TypeConflict { expected, actual },
..
} => Some(
format!("This if block evaluates to type \"{expected}\" but the else block evaluates to \"{actual}\"")
),
Self::IfMissingElse { .. } => Some(
"This \"if\" expression evaluates to a value but is missing an else block"
.to_string(),
),
Self::InvalidAssignmentTarget { found, .. } => {
Some(format!("Cannot assign to {found}"))
}
Self::Lex(error) => error.details(),
Self::ParseFloatError { error, .. } => Some(error.to_string()),
Self::ParseIntError { error, .. } => Some(error.to_string()),
Self::ReturnTypeConflict {
conflict: TypeConflict { expected, actual },
..
} => Some(format!(
"Expected return type \"{expected}\" but found \"{actual}\""
)),
Self::UndeclaredVariable { identifier, .. } => {
Some(format!("{identifier} has not been declared"))
}
Self::UnexpectedReturn { .. } => None,
Self::VariableOutOfScope { identifier, .. } => {
Some(format!("{identifier} is out of scope"))
}
_ => None,
}
}
fn position(&self) -> Span {
match self {
Self::CannotAddArguments { position, .. } => *position,
Self::CannotAddType { position, .. } => *position,
Self::CannotChainComparison { position } => *position,
Self::CannotDivideArguments { position, .. } => *position,
Self::CannotDivideType { position, .. } => *position,
Self::CannotModuloArguments { position, .. } => *position,
Self::CannotModuloType { position, .. } => *position,
Self::CannotMutateImmutableVariable { position, .. } => *position,
Self::CannotMultiplyArguments { position, .. } => *position,
Self::CannotMultiplyType { position, .. } => *position,
Self::CannotResolveRegisterType { position, .. } => *position,
Self::CannotResolveVariableType { position, .. } => *position,
Self::CannotSubtractArguments { position, .. } => *position,
Self::CannotSubtractType { position, .. } => *position,
Self::ConstantIndexOutOfBounds { position, .. } => *position,
Self::ExpectedExpression { position, .. } => *position,
Self::ExpectedFunction { position, .. } => *position,
Self::ExpectedFunctionType { position, .. } => *position,
Self::ExpectedMutableVariable { position, .. } => *position,
Self::ExpectedToken { position, .. } => *position,
Self::ExpectedTokenMultiple { position, .. } => *position,
Self::IfElseBranchMismatch { position, .. } => *position,
Self::IfMissingElse { position } => *position,
Self::InstructionIndexOutOfBounds { position, .. } => *position,
Self::InvalidAssignmentTarget { position, .. } => *position,
Self::Lex(error) => error.position(),
Self::ListItemTypeConflict { position, .. } => *position,
Self::LocalIndexOutOfBounds { position, .. } => *position,
Self::ParseFloatError { position, .. } => *position,
Self::ParseIntError { position, .. } => *position,
Self::ReturnTypeConflict { position, .. } => *position,
Self::UndeclaredVariable { position, .. } => *position,
Self::UnexpectedReturn { position } => *position,
Self::VariableOutOfScope { position, .. } => *position,
}
}
}
impl From<LexError> for CompileError {
fn from(error: LexError) -> Self {
Self::Lex(error)
}
}

View File

@ -20,11 +20,11 @@ use crate::{Compiler, Operation};
/// ```
///
/// The instructions must be in the following order:
/// - `Equal`, `Less` or `LessEqual`
/// - `Test`
/// - `Jump`
/// - `LoadBoolean`
/// - `LoadBoolean`
/// - `EQUAL`, `LESS` or `LESS_EQUAL`
/// - `TEST`
/// - `JUMP`
/// - `LOAD_BOOLEAN`
/// - `LOAD_BOOLEAN`
pub fn optimize_test_with_explicit_booleans(compiler: &mut Compiler) {
if matches!(
compiler.get_last_operations(),
@ -54,7 +54,7 @@ pub fn optimize_test_with_explicit_booleans(compiler: &mut Compiler) {
/// Optimizes a control flow pattern.
///
/// Test instructions (which are always followed by a jump) can be optimized when the next
/// TEST instructions (which are always followed by a JUMP) can be optimized when the next
/// instructions are two constant or boolean loaders. The first loader is set to skip an instruction
/// if it is run while the second loader is modified to use the first's register. Foregoing the use
/// a jump instruction is an optimization but consolidating the registers is a necessity. This is
@ -62,10 +62,10 @@ pub fn optimize_test_with_explicit_booleans(compiler: &mut Compiler) {
/// would not know at compile time which branch would be executed at runtime.
///
/// The instructions must be in the following order:
/// - `Test`
/// - `Jump`
/// - `LoadBoolean` or `LoadConstant`
/// - `LoadBoolean` or `LoadConstant`
/// - `TEST`
/// - `JUMP`
/// - `LOAD_BOOLEAN` or `LOAD_CONSTANT`
/// - `LOAD_BOOLEAN` or `LOAD_CONSTANT`
pub fn optimize_test_with_loader_arguments(compiler: &mut Compiler) {
if !matches!(
compiler.get_last_operations(),

View File

@ -2,7 +2,8 @@
//! annotations.
use std::fmt::{self, Display, Formatter};
use annotate_snippets::{Level, Renderer, Snippet};
use annotate_snippets::{Annotation, Level, Renderer, Snippet};
use smallvec::SmallVec;
use crate::{CompileError, Span, VmError};
@ -29,14 +30,18 @@ impl<'src> DustError<'src> {
}
pub fn report(&self) -> String {
let (position, title, description, details) = self.error_data();
let (title, description, detail_snippets, help_snippets) = self.error_data();
let label = format!("{}: {}", title, description);
let details = details.unwrap_or_else(|| "While parsing this code".to_string());
let message = Level::Error.title(&label).snippet(
Snippet::source(self.source())
.fold(false)
.annotation(Level::Error.span(position.0..position.1).label(&details)),
);
let message = Level::Error
.title(&label)
.snippets(detail_snippets.iter().map(|(details, position)| {
Snippet::source(self.source())
.annotation(Level::Info.span(position.0..position.1).label(details))
}))
.snippets(help_snippets.iter().map(|(help, position)| {
Snippet::source(self.source())
.annotation(Level::Help.span(position.0..position.1).label(help))
}));
let mut report = String::new();
let renderer = Renderer::styled();
@ -45,19 +50,26 @@ impl<'src> DustError<'src> {
report
}
fn error_data(&self) -> (Span, &str, &str, Option<String>) {
fn error_data(
&self,
) -> (
&str,
&str,
SmallVec<[(String, Span); 2]>,
SmallVec<[(String, Span); 2]>,
) {
match self {
Self::Compile { error, .. } => (
error.position(),
CompileError::title(),
error.description(),
error.details(),
error.detail_snippets(),
error.help_snippets(),
),
Self::Runtime { error, .. } => (
error.position(),
VmError::title(),
error.description(),
error.details(),
error.detail_snippets(),
error.help_snippets(),
),
}
}
@ -79,6 +91,6 @@ impl Display for DustError<'_> {
pub trait AnnotatedError {
fn title() -> &'static str;
fn description(&self) -> &'static str;
fn details(&self) -> Option<String>;
fn position(&self) -> Span;
fn detail_snippets(&self) -> SmallVec<[(String, Span); 2]>;
fn help_snippets(&self) -> SmallVec<[(String, Span); 2]>;
}

View File

@ -3,9 +3,6 @@
//! This module provides two lexing options:
//! - [`lex`], which lexes the entire input and returns a vector of tokens and their positions
//! - [`Lexer`], which lexes the input a token at a time
use std::fmt::{self, Display, Formatter};
use serde::{Deserialize, Serialize};
use crate::{dust_error::AnnotatedError, CompileError, DustError, Span, Token};
@ -747,65 +744,12 @@ impl AnnotatedError for LexError {
}
}
fn details(&self) -> Option<String> {
match self {
Self::ExpectedAsciiHexDigit { actual, .. } => Some(format!(
"Expected ASCII hex digit (0-9 or A-F), found \"{}\"",
actual
.map(|character| character.to_string())
.unwrap_or("end of input".to_string())
)),
Self::ExpectedCharacter {
expected, actual, ..
} => Some(format!(
"Expected character \"{}\", found \"{}\"",
expected, actual
)),
Self::ExpectedCharacterMultiple {
expected, actual, ..
} => {
let mut details = "Expected one of the following characters ".to_string();
for (i, c) in expected.iter().enumerate() {
if i == expected.len() - 1 {
details.push_str(", or ");
} else if i > 0 {
details.push_str(", ");
}
details.push(*c);
}
details.push_str(&format!(" but found {}", actual));
Some(details)
}
Self::UnexpectedCharacter { actual, .. } => {
Some(format!("Unexpected character \"{}\"", actual))
}
Self::UnexpectedEndOfFile { .. } => Some("Unexpected end of file".to_string()),
}
fn detail_snippets(&self) -> smallvec::SmallVec<[(String, Span); 2]> {
todo!()
}
fn position(&self) -> Span {
match self {
Self::ExpectedAsciiHexDigit { position, .. } => Span(*position, *position),
Self::ExpectedCharacter { position, .. } => Span(*position, *position),
Self::ExpectedCharacterMultiple { position, .. } => Span(*position, *position),
Self::UnexpectedCharacter { position, .. } => Span(*position, *position),
Self::UnexpectedEndOfFile { position } => Span(*position, *position),
}
}
}
impl Display for LexError {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.description())?;
if let Some(details) = self.details() {
write!(f, ": {}", details)?;
}
Ok(())
fn help_snippets(&self) -> smallvec::SmallVec<[(String, Span); 2]> {
todo!()
}
}

View File

@ -289,25 +289,11 @@ impl AnnotatedError for NativeFunctionError {
}
}
fn details(&self) -> Option<String> {
match self {
NativeFunctionError::ExpectedArgumentCount {
expected, found, ..
} => Some(format!("Expected {} arguments, found {}", expected, found)),
NativeFunctionError::Panic { message, .. } => message.clone(),
NativeFunctionError::Parse { error, .. } => Some(format!("{}", error)),
NativeFunctionError::Io { error, .. } => Some(format!("{}", error)),
NativeFunctionError::Vm(error) => error.details(),
}
fn detail_snippets(&self) -> SmallVec<[(String, Span); 2]> {
todo!()
}
fn position(&self) -> Span {
match self {
NativeFunctionError::ExpectedArgumentCount { position, .. } => *position,
NativeFunctionError::Panic { position, .. } => *position,
NativeFunctionError::Parse { position, .. } => *position,
NativeFunctionError::Io { position, .. } => *position,
NativeFunctionError::Vm(error) => error.position(),
}
fn help_snippets(&self) -> SmallVec<[(String, Span); 2]> {
todo!()
}
}

View File

@ -911,39 +911,11 @@ impl AnnotatedError for VmError {
}
}
fn details(&self) -> Option<String> {
match self {
Self::EmptyRegister { index, .. } => Some(format!("Register R{index} is empty")),
Self::ExpectedFunction { found, .. } => Some(format!("{found} is not a function")),
Self::RegisterIndexOutOfBounds { index, .. } => {
Some(format!("Register {index} does not exist"))
}
Self::NativeFunction(error) => error.details(),
Self::Value { error, .. } => Some(error.to_string()),
Self::ValueDisplay { error, .. } => Some(error.to_string() + " while displaying value"),
_ => None,
}
fn detail_snippets(&self) -> SmallVec<[(String, Span); 2]> {
todo!()
}
fn position(&self) -> Span {
match self {
Self::ConstantIndexOutOfBounds { position, .. } => *position,
Self::EmptyRegister { position, .. } => *position,
Self::ExpectedBoolean { position, .. } => *position,
Self::ExpectedConcreteValue { position, .. } => *position,
Self::ExpectedFunction { position, .. } => *position,
Self::ExpectedParent { position } => *position,
Self::ExpectedValue { position, .. } => *position,
Self::InstructionIndexOutOfBounds { position, .. } => *position,
Self::LocalIndexOutOfBounds { position, .. } => *position,
Self::NativeFunction(error) => error.position(),
Self::RegisterIndexOutOfBounds { position, .. } => *position,
Self::StackOverflow { position } => *position,
Self::StackUnderflow { position } => *position,
Self::UndefinedLocal { position, .. } => *position,
Self::Value { position, .. } => *position,
Self::ValueDisplay { position, .. } => *position,
}
fn help_snippets(&self) -> SmallVec<[(String, Span); 2]> {
todo!()
}
}

7
wl-copy Normal file
View File

@ -0,0 +1,7 @@
Finished `dev` profile [optimized + debuginfo] target(s) in 0.02s
Running `target/debug/dust -c '42 + true'`
error: Compilation Error: Cannot add to this type
 |
1 | 42 + true
 | ^^^^ While parsing this code
 |