use std::{cell::RefCell, collections::HashMap}; use chumsky::{input::SpannedInput, pratt::*, prelude::*}; use clap::builder::TypedValueParser; use crate::{ abstract_tree::*, error::Error, lexer::{Control, Operator, Token}, }; pub type DustParser<'src> = Boxed< 'src, 'src, ParserInput<'src>, Vec>, extra::Err, SimpleSpan>>, >; pub type ParserInput<'src> = SpannedInput, SimpleSpan, &'src [(Token<'src>, SimpleSpan)]>; pub fn parse<'src>( tokens: &'src [(Token<'src>, SimpleSpan)], ) -> Result>, Vec> { parser() .parse(tokens.spanned((tokens.len()..tokens.len()).into())) .into_result() .map_err(|errors| errors.into_iter().map(|error| error.into()).collect()) } pub fn parser<'src>() -> DustParser<'src> { let identifiers: RefCell> = RefCell::new(HashMap::new()); let identifier = select! { Token::Identifier(text) => { let mut identifiers = identifiers.borrow_mut(); if let Some(identifier) = identifiers.get(&text) { identifier.clone() } else { let new = Identifier::new(text); identifiers.insert(text, new.clone()); new } } }; let basic_value = select! { Token::Boolean(boolean) => ValueNode::Boolean(boolean), Token::Integer(integer) => ValueNode::Integer(integer), Token::Float(float) => ValueNode::Float(float), Token::String(string) => ValueNode::String(string.to_string()), } .map_with(|value, state| Expression::Value(value).positioned(state.span())) .boxed(); let r#type = recursive(|r#type| { let type_specification = recursive(|r#type| { let function_type = r#type .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ) .then_ignore(just(Token::Control(Control::Arrow))) .then(r#type.clone()) .map(|(parameter_types, return_type)| Type::Function { parameter_types, return_type: Box::new(return_type), }); let list_of = just(Token::Keyword("list")) .ignore_then(r#type.clone().delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), )) .map(|item_type| Type::ListOf(Box::new(item_type))); let list_exact = r#type .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::SquareOpen)), just(Token::Control(Control::SquareClose)), ) .map(|types| Type::ListExact(types)); choice(( function_type, list_of, list_exact, just(Token::Keyword("any")).to(Type::Any), just(Token::Keyword("bool")).to(Type::Boolean), just(Token::Keyword("float")).to(Type::Float), just(Token::Keyword("int")).to(Type::Integer), just(Token::Keyword("none")).to(Type::None), just(Token::Keyword("range")).to(Type::Range), just(Token::Keyword("str")).to(Type::String), just(Token::Keyword("list")).to(Type::List), identifier .clone() .map(|identifier| Type::Custom(identifier)), )) }); just(Token::Control(Control::Colon)).ignore_then(type_specification) }) .map_with(|r#type, state| r#type.positioned(state.span())); let statement = recursive(|statement| { let block = statement .clone() .repeated() .collect() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ) .map(|statements| Block::new(statements)); let positioned_block = block .clone() .map_with(|block, state| block.positioned(state.span())); let expression = recursive(|expression| { let identifier_expression = identifier.clone().map_with(|identifier, state| { Expression::Identifier(identifier).positioned(state.span()) }); let range = { let raw_integer = select! { Token::Integer(integer) => integer }; raw_integer .clone() .then_ignore(just(Token::Control(Control::DoubleDot))) .then(raw_integer) .map_with(|(start, end), state| { Expression::Value(ValueNode::Range(start..end)).positioned(state.span()) }) }; let list = expression .clone() .separated_by(just(Token::Control(Control::Comma))) .allow_trailing() .collect() .delimited_by( just(Token::Control(Control::SquareOpen)), just(Token::Control(Control::SquareClose)), ) .map_with(|list, state| { Expression::Value(ValueNode::List(list)).positioned(state.span()) }); let map_assignment = identifier .clone() .then(r#type.clone().or_not()) .then_ignore(just(Token::Operator(Operator::Assign))) .then(expression.clone()) .map(|((identifier, r#type), expression)| (identifier, r#type, expression)); let map = map_assignment .separated_by(just(Token::Control(Control::Comma)).or_not()) .allow_trailing() .collect() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ) .map_with(|map_assigment_list, state| { Expression::Value(ValueNode::Map(map_assigment_list)).positioned(state.span()) }); let function = identifier .clone() .then(r#type.clone()) .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ) .then(r#type.clone()) .then(block.clone()) .map_with(|((parameters, return_type), body), state| { Expression::Value(ValueNode::Function { parameters, return_type, body: body.positioned(state.span()), }) .positioned(state.span()) }); let function_expression = choice((identifier_expression.clone(), function.clone())); let function_call = function_expression .then( expression .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ), ) .map_with(|(function, arguments), state| { Expression::FunctionCall(FunctionCall::new(function, arguments)) .positioned(state.span()) }); let atom = choice(( function_call.clone(), identifier_expression.clone(), basic_value.clone(), list.clone(), expression.clone().delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ), )); use Operator::*; let logic_math_and_index = atom.pratt(( prefix(2, just(Token::Operator(Not)), |_, expression, span| { Expression::Logic(Box::new(Logic::Not(expression))).positioned(span) }), infix( left(3), just(Token::Control(Control::Dot)), |left, _, right, span| { Expression::Index(Box::new(Index::new(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Equal)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Equal(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(NotEqual)), |left, _, right, span| { Expression::Logic(Box::new(Logic::NotEqual(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Greater)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Greater(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Less)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Less(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(GreaterOrEqual)), |left, _, right, span| { Expression::Logic(Box::new(Logic::GreaterOrEqual(left, right))) .positioned(span) }, ), infix( left(1), just(Token::Operator(LessOrEqual)), |left, _, right, span| { Expression::Logic(Box::new(Logic::LessOrEqual(left, right))) .positioned(span) }, ), infix( left(1), just(Token::Operator(And)), |left, _, right, span| { Expression::Logic(Box::new(Logic::And(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Or)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Or(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Add)), |left, _, right, span| { Expression::Math(Box::new(Math::Add(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Subtract)), |left, _, right, span| { Expression::Math(Box::new(Math::Subtract(left, right))).positioned(span) }, ), infix( left(2), just(Token::Operator(Multiply)), |left, _, right, span| { Expression::Math(Box::new(Math::Multiply(left, right))).positioned(span) }, ), infix( left(2), just(Token::Operator(Divide)), |left, _, right, span| { Expression::Math(Box::new(Math::Divide(left, right))).positioned(span) }, ), infix( left(1), just(Token::Operator(Modulo)), |left, _, right, span| { Expression::Math(Box::new(Math::Modulo(left, right))).positioned(span) }, ), )); choice(( function, function_call, range, logic_math_and_index, identifier_expression, list, map, basic_value, )) }); let expression_statement = expression.clone().map_with(|expression, state| { Statement::Expression(expression).positioned(state.span()) }); let r#break = just(Token::Keyword("break")) .map_with(|_, state| Statement::Break.positioned(state.span())); let assignment = identifier .clone() .then(r#type.clone().or_not()) .then(choice(( just(Token::Operator(Operator::Assign)).to(AssignmentOperator::Assign), just(Token::Operator(Operator::AddAssign)).to(AssignmentOperator::AddAssign), just(Token::Operator(Operator::SubAssign)).to(AssignmentOperator::SubAssign), ))) .then(statement.clone()) .map_with(|(((identifier, r#type), operator), statement), state| { Statement::Assignment(Assignment::new(identifier, r#type, operator, statement)) .positioned(state.span()) }); let block_statement = block .clone() .map_with(|block, state| Statement::Block(block).positioned(state.span())); let r#loop = statement .clone() .repeated() .at_least(1) .collect() .delimited_by( just(Token::Keyword("loop")).then(just(Token::Control(Control::CurlyOpen))), just(Token::Control(Control::CurlyClose)), ) .map_with(|statements, state| { Statement::Loop(Loop::new(statements)).positioned(state.span()) }); let r#while = just(Token::Keyword("while")) .ignore_then(expression.clone()) .then(block.clone()) .map_with(|(expression, block), state| { Statement::While(While::new(expression, block)).positioned(state.span()) }); let if_else = just(Token::Keyword("if")) .ignore_then(expression.clone()) .then(positioned_block.clone()) .then( just(Token::Keyword("else")) .ignore_then(positioned_block.clone()) .or_not(), ) .map_with(|((if_expression, if_block), else_block), state| { Statement::IfElse(IfElse::new(if_expression, if_block, else_block)) .positioned(state.span()) }); choice(( if_else, assignment, expression_statement, r#break, block_statement, r#loop, r#while, )) .then_ignore(just(Token::Control(Control::Semicolon)).or_not()) }); statement.repeated().collect().boxed() } #[cfg(test)] mod tests { use crate::lexer::lex; use super::*; #[test] fn r#while() { assert_eq!( parse(&lex("while true { output('hi') }").unwrap()).unwrap()[0], Statement::While(While::new( Expression::Value(ValueNode::Boolean(true)).positioned((0..0).into()), Block::new(vec![Statement::Expression( Expression::FunctionCall(FunctionCall::new( Expression::Identifier(Identifier::new("output")).positioned((0..0).into()), vec![Expression::Value(ValueNode::String("hi".to_string())) .positioned((0..0).into())] )) .positioned((0..0).into()) ) .positioned((0..0).into())]) )) .positioned((0..0).into()) ) } #[test] fn types() { assert_eq!( parse(&lex("foobar : bool = true").unwrap()).unwrap()[0], Statement::Assignment(Assignment::new( Identifier::new("foobar"), Some(Type::Boolean.positioned((0..0).into())), AssignmentOperator::Assign, Statement::Expression( Expression::Value(ValueNode::Boolean(true)).positioned((0..0).into()) ) .positioned((0..0).into()) ),) .positioned((0..0).into()) ); assert_eq!( parse(&lex("foobar : list(bool) = [true]").unwrap()).unwrap()[0], Statement::Assignment(Assignment::new( Identifier::new("foobar"), Some(Type::ListOf(Box::new(Type::Boolean)).positioned((0..0).into())), AssignmentOperator::Assign, Statement::Expression( Expression::Value(ValueNode::List(vec![Expression::Value( ValueNode::Boolean(true) ) .positioned((0..0).into())])) .positioned((0..0).into()) ) .positioned((0..0).into()) )) .positioned((0..0).into()) ); assert_eq!( parse(&lex("foobar : [bool, str] = [true, '42']").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::ListExact(vec![Type::Boolean, Type::String])), AssignmentOperator::Assign, Statement::expression( Expression::Value(ValueNode::List(vec![ Expression::Value(ValueNode::Boolean(true)), Expression::Value(ValueNode::String("42".to_string())) ])), (0..0).into() ) ), (0..0).into() ) ); assert_eq!( parse(&lex("foobar : () -> any = some_function").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::Function { parameter_types: vec![], return_type: Box::new(Type::Any) }), AssignmentOperator::Assign, Statement::expression( Expression::Identifier(Identifier::new("some_function")), (0..0).into() ) ), (0..0).into() ) ); } #[test] fn function_call() { assert_eq!( parse(&lex("output()").unwrap()).unwrap()[0], Statement::expression( Expression::FunctionCall(FunctionCall::new( Expression::Identifier(Identifier::new("output")), Vec::with_capacity(0), )), (0..0).into() ) ) } #[test] fn range() { assert_eq!( parse(&lex("1..10").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Range(1..10)), (0..0).into()) ) } #[test] fn function() { assert_eq!( parse(&lex("(x: int): int { x }").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Function { parameters: vec![(Identifier::new("x"), Type::Integer)], return_type: Type::Integer, body: Block::new(vec![Statement::expression( Expression::Identifier(Identifier::new("x")), (0..0).into() )]) }), (0..0).into() ) ) } #[test] fn r#if() { assert_eq!( parse(&lex("if true { 'foo' }").unwrap()).unwrap()[0], Statement::if_else( IfElse::new( Expression::Value(ValueNode::Boolean(true)), Block::new(vec![Statement::expression( Expression::Value(ValueNode::String("foo".to_string())), (0..0).into() )]), None ), (0..0).into() ) ); } #[test] fn if_else() { assert_eq!( parse(&lex("if true {'foo' } else { 'bar' }").unwrap()).unwrap()[0], Statement::if_else( IfElse::new( Expression::Value(ValueNode::Boolean(true)), Block::new(vec![Statement::expression( Expression::Value(ValueNode::String("foo".to_string())), (0..0).into() )]), Some(Block::new(vec![Statement::expression( Expression::Value(ValueNode::String("bar".to_string())), (0..0).into() )])) ), (0..0).into() ) ) } #[test] fn map() { assert_eq!( parse(&lex("{ foo = 'bar' }").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Map(vec![( Identifier::new("foo"), None, Expression::Value(ValueNode::String("bar".to_string())) )])), (0..0).into() ) ); assert_eq!( parse(&lex("{ x = 1, y = 2, }").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Map(vec![ ( Identifier::new("x"), None, Expression::Value(ValueNode::Integer(1)) ), ( Identifier::new("y"), None, Expression::Value(ValueNode::Integer(2)) ), ])), (0..0).into() ) ); assert_eq!( parse(&lex("{ x = 1 y = 2 }").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Map(vec![ ( Identifier::new("x"), None, Expression::Value(ValueNode::Integer(1)) ), ( Identifier::new("y"), None, Expression::Value(ValueNode::Integer(2)) ), ])), (0..0).into() ) ); } #[test] fn math() { assert_eq!( parse(&lex("1 + 1").unwrap()).unwrap()[0], Statement::expression( Expression::Math(Box::new(Math::Add( Expression::Value(ValueNode::Integer(1)), Expression::Value(ValueNode::Integer(1)) ))), (0..0).into() ) ); } #[test] fn r#loop() { assert_eq!( parse(&lex("loop { 42 }").unwrap()).unwrap()[0], Statement::r#loop( Loop::new(vec![Statement::expression( Expression::Value(ValueNode::Integer(42)), (0..0).into() )]), (0..0).into() ) ); } #[test] fn block() { assert_eq!( parse(&lex("{ x }").unwrap()).unwrap()[0], Statement::block( Block::new(vec![Statement::expression( Expression::Identifier(Identifier::new("x")), (0..0).into() )],), (0..0).into() ) ); assert_eq!( parse( &lex(" { x; y; z } ") .unwrap() ) .unwrap()[0], Statement::block( Block::new(vec![ Statement::expression( Expression::Identifier(Identifier::new("x")), (0..0).into() ), Statement::expression( Expression::Identifier(Identifier::new("y")), (0..0).into() ), Statement::expression( Expression::Identifier(Identifier::new("z")), (0..0).into() ), ]), (0..0).into() ) ); assert_eq!( parse( &lex(" { 1 == 1 z } ") .unwrap() ) .unwrap()[0], Statement::block( Block::new(vec![ Statement::expression( Expression::Logic(Box::new(Logic::Equal( Expression::Value(ValueNode::Integer(1)), Expression::Value(ValueNode::Integer(1)) ))), (0..0).into() ), Statement::expression( Expression::Identifier(Identifier::new("z")), (0..0).into() ), ]), (0..0).into() ) ); } #[test] fn identifier() { assert_eq!( parse(&lex("x").unwrap()).unwrap()[0], Statement::expression(Expression::Identifier(Identifier::new("x")), (0..0).into()) ); assert_eq!( parse(&lex("foobar").unwrap()).unwrap()[0], Statement::expression( Expression::Identifier(Identifier::new("foobar")), (0..0).into() ) ); assert_eq!( parse(&lex("HELLO").unwrap()).unwrap()[0], Statement::expression( Expression::Identifier(Identifier::new("HELLO")), (0..0).into() ) ); } #[test] fn assignment() { assert_eq!( parse(&lex("foobar = 1").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), None, AssignmentOperator::Assign, Statement::expression(Expression::Value(ValueNode::Integer(1)), (0..0).into()) ), (0..0).into() ), ); } #[test] fn assignment_with_basic_type() { assert_eq!( parse(&lex("foobar: int = 1").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::Integer), AssignmentOperator::Assign, Statement::expression(Expression::Value(ValueNode::Integer(1)), (0..0).into()) ), (0..0).into() ), ); } #[test] fn assignment_with_list_types() { assert_eq!( parse(&lex("foobar: list = []").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::List), AssignmentOperator::Assign, Statement::expression( Expression::Value(ValueNode::List(vec![])), (0..0).into() ) ), (0..0).into() ), ); assert_eq!( parse(&lex("foobar: list(int) = []").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::ListOf(Box::new(Type::Integer))), AssignmentOperator::Assign, Statement::expression( Expression::Value(ValueNode::List(vec![])), (0..0).into() ) ), (0..0).into() ), ); assert_eq!( parse(&lex("foobar: [int, str] = [ 42, 'foo' ]").unwrap()).unwrap()[0], Statement::assignment( Assignment::new( Identifier::new("foobar"), Some(Type::ListExact(vec![Type::Integer, Type::String])), AssignmentOperator::Assign, Statement::expression( Expression::Value(ValueNode::List(vec![ Expression::Value(ValueNode::Integer(42)), Expression::Value(ValueNode::String("foo".to_string())) ])), (0..0).into() ) ), (0..0).into() ), ); } #[test] fn logic() { assert_eq!( parse(&lex("x == 1").unwrap()).unwrap()[0], Statement::expression( Expression::Logic(Box::new(Logic::Equal( Expression::Identifier(Identifier::new("x")), Expression::Value(ValueNode::Integer(1)) ))), (0..0).into() ) ); assert_eq!( parse(&lex("(x == 1) && (y == 2)").unwrap()).unwrap()[0], Statement::expression( Expression::Logic(Box::new(Logic::And( Expression::Logic(Box::new(Logic::Equal( Expression::Identifier(Identifier::new("x")), Expression::Value(ValueNode::Integer(1)) ))), Expression::Logic(Box::new(Logic::Equal( Expression::Identifier(Identifier::new("y")), Expression::Value(ValueNode::Integer(2)) ))), ))), (0..0).into() ) ); assert_eq!( parse(&lex("(x == 1) && (y == 2) && true").unwrap()).unwrap()[0], Statement::expression( Expression::Logic(Box::new(Logic::And( Expression::Logic(Box::new(Logic::And( Expression::Logic(Box::new(Logic::Equal( Expression::Identifier(Identifier::new("x")), Expression::Value(ValueNode::Integer(1)) ))), Expression::Logic(Box::new(Logic::Equal( Expression::Identifier(Identifier::new("y")), Expression::Value(ValueNode::Integer(2)) ))), ))), Expression::Value(ValueNode::Boolean(true)) ))), (0..0).into() ) ); } #[test] fn list() { assert_eq!( parse(&lex("[]").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::List(Vec::with_capacity(0))), (0..0).into() ) ); assert_eq!( parse(&lex("[42]").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::List(vec![Expression::Value( ValueNode::Integer(42) )])), (0..0).into() ) ); assert_eq!( parse(&lex("[42, 'foo', 'bar', [1, 2, 3,]]").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::List(vec![ Expression::Value(ValueNode::Integer(42)), Expression::Value(ValueNode::String("foo".to_string())), Expression::Value(ValueNode::String("bar".to_string())), Expression::Value(ValueNode::List(vec![ Expression::Value(ValueNode::Integer(1)), Expression::Value(ValueNode::Integer(2)), Expression::Value(ValueNode::Integer(3)), ])) ])), (0..0).into() ) ); } #[test] fn r#true() { assert_eq!( parse(&lex("true").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Boolean(true)), (0..0).into()) ); } #[test] fn r#false() { assert_eq!( parse(&lex("false").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Boolean(false)), (0..0).into()) ); } #[test] fn positive_float() { assert_eq!( parse(&lex("0").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(0.0)), (0..0).into()) ); assert_eq!( parse(&lex("42").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(42.0)), (0..0).into()) ); let max_float = f64::MAX.to_string() + ".0"; assert_eq!( parse(&lex(&max_float).unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(f64::MAX)), (0..0).into()) ); let min_positive_float = f64::MIN_POSITIVE.to_string(); assert_eq!( parse(&lex(&min_positive_float).unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Float(f64::MIN_POSITIVE)), (0..0).into() ) ); } #[test] fn negative_float() { assert_eq!( parse(&lex("-0.0").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(-0.0)), (0..0).into()) ); assert_eq!( parse(&lex("-42.0").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(-42.0)), (0..0).into()) ); let min_float = f64::MIN.to_string() + ".0"; assert_eq!( parse(&lex(&min_float).unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Float(f64::MIN)), (0..0).into()) ); let max_negative_float = format!("-{}", f64::MIN_POSITIVE); assert_eq!( parse(&lex(&max_negative_float).unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Float(-f64::MIN_POSITIVE)), (0..0).into() ) ); } #[test] fn other_float() { assert_eq!( parse(&lex("Infinity").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Float(f64::INFINITY)), (0..0).into() ) ); assert_eq!( parse(&lex("-Infinity").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Float(f64::NEG_INFINITY)), (0..0).into() ) ); if let StatementInner::Expression(Expression::Value(ValueNode::Float(float))) = &parse(&lex("NaN").unwrap()).unwrap()[0].inner { assert!(float.is_nan()); } else { panic!("Expected a float."); } } #[test] fn positive_integer() { for i in 0..10 { let source = i.to_string(); let tokens = lex(&source).unwrap(); let statements = parse(&tokens).unwrap(); assert_eq!( statements[0], Statement::expression(Expression::Value(ValueNode::Integer(i)), (0..0).into()) ) } assert_eq!( parse(&lex("42").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Integer(42)), (0..0).into()) ); let maximum_integer = i64::MAX.to_string(); assert_eq!( parse(&lex(&maximum_integer).unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Integer(i64::MAX)), (0..0).into() ) ); } #[test] fn negative_integer() { for i in -9..1 { let source = i.to_string(); let tokens = lex(&source).unwrap(); let statements = parse(&tokens).unwrap(); assert_eq!( statements[0], Statement::expression(Expression::Value(ValueNode::Integer(i)), (0..0).into()) ) } assert_eq!( parse(&lex("-42").unwrap()).unwrap()[0], Statement::expression(Expression::Value(ValueNode::Integer(-42)), (0..0).into()) ); let minimum_integer = i64::MIN.to_string(); assert_eq!( parse(&lex(&minimum_integer).unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::Integer(i64::MIN)), (0..0).into() ) ); } #[test] fn double_quoted_string() { assert_eq!( parse(&lex("\"\"").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("\"42\"").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("42".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("\"foobar\"").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("foobar".to_string())), (0..0).into() ) ); } #[test] fn single_quoted_string() { assert_eq!( parse(&lex("''").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("'42'").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("42".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("'foobar'").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("foobar".to_string())), (0..0).into() ) ); } #[test] fn grave_quoted_string() { assert_eq!( parse(&lex("``").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("`42`").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("42".to_string())), (0..0).into() ) ); assert_eq!( parse(&lex("`foobar`").unwrap()).unwrap()[0], Statement::expression( Expression::Value(ValueNode::String("foobar".to_string())), (0..0).into() ) ); } }