//! Tools for analyzing an abstract syntax tree and catching errors before running the virtual //! machine. //! //! This module provides two anlysis options: //! - `analyze` convenience function, which takes a string input //! - `Analyzer` struct, which borrows an abstract syntax tree and a context use std::{ error::Error, fmt::{self, Display, Formatter}, }; use crate::{ ast::{ AbstractSyntaxTree, BlockExpression, CallExpression, ElseExpression, FieldAccessExpression, IfExpression, LetStatement, ListExpression, ListIndexExpression, LoopExpression, MapExpression, Node, OperatorExpression, RangeExpression, Span, Statement, StructDefinition, StructExpression, TupleAccessExpression, }, parse, Context, DustError, Expression, FieldsStructType, Identifier, StructType, TupleType, Type, }; /// Analyzes the abstract syntax tree for errors. /// /// # Examples /// ``` /// # use std::collections::HashMap; /// # use dust_lang::*; /// let input = "x = 1 + false"; /// let result = analyze(input); /// /// assert!(result.is_err()); /// ``` pub fn analyze(source: &str) -> Result<(), DustError> { let abstract_tree = parse(source)?; let context = Context::new(); let mut analyzer = Analyzer::new(&abstract_tree, &context); analyzer .analyze() .map_err(|analysis_error| DustError::AnalysisError { analysis_error, source, }) } /// Static analyzer that checks for potential runtime errors. /// /// # Examples /// ``` /// # use std::collections::HashMap; /// # use dust_lang::*; /// let input = "x = 1 + false"; /// let abstract_tree = parse(input).unwrap(); /// let mut context = Context::new(); /// let mut analyzer = Analyzer::new(&abstract_tree, &mut context); /// let result = analyzer.analyze(); /// /// assert!(result.is_err()); pub struct Analyzer<'a> { abstract_tree: &'a AbstractSyntaxTree, context: &'a Context, } impl<'a> Analyzer<'a> { pub fn new(abstract_tree: &'a AbstractSyntaxTree, context: &'a Context) -> Self { Self { abstract_tree, context, } } pub fn analyze(&mut self) -> Result<(), AnalysisError> { for statement in &self.abstract_tree.statements { self.analyze_statement(statement)?; } Ok(()) } fn analyze_statement(&mut self, statement: &Statement) -> Result<(), AnalysisError> { match statement { Statement::Expression(expression) => self.analyze_expression(expression)?, Statement::ExpressionNullified(expression_node) => { self.analyze_expression(&expression_node.inner)?; } Statement::Let(let_statement) => match &let_statement.inner { LetStatement::Let { identifier, value } => { let type_option = value.return_type(self.context); if let Some(r#type) = type_option { self.context.set_type( identifier.inner.clone(), r#type, identifier.position, ); } else { return Err(AnalysisError::ExpectedValue { actual: statement.clone(), }); } self.analyze_expression(value)?; } LetStatement::LetMut { identifier, value } => { let type_option = value.return_type(self.context); if let Some(r#type) = type_option { self.context.set_type( identifier.inner.clone(), r#type, identifier.position, ); } else { return Err(AnalysisError::ExpectedValue { actual: statement.clone(), }); } self.analyze_expression(value)?; } LetStatement::LetType { identifier, r#type, value, } => todo!(), LetStatement::LetMutType { identifier, r#type, value, } => todo!(), }, Statement::StructDefinition(struct_definition) => { let (name, struct_type) = match &struct_definition.inner { StructDefinition::Unit { name } => { (name.inner.clone(), Type::Struct(StructType::Unit)) } StructDefinition::Tuple { name, items } => { let fields = items.iter().map(|item| item.inner.clone()).collect(); ( name.inner.clone(), Type::Struct(StructType::Tuple(TupleType { fields })), ) } StructDefinition::Fields { name, fields } => { let fields = fields .iter() .map(|(identifier, r#type)| { (identifier.inner.clone(), r#type.inner.clone()) }) .collect(); ( name.inner.clone(), Type::Struct(StructType::Fields(FieldsStructType { fields })), ) } }; self.context .set_type(name, struct_type, struct_definition.position); } } Ok(()) } fn analyze_expression(&mut self, expression: &Expression) -> Result<(), AnalysisError> { match expression { Expression::Block(block_expression) => self.analyze_block(&block_expression.inner)?, Expression::Call(call_expression) => { let CallExpression { invoker, arguments } = call_expression.inner.as_ref(); self.analyze_expression(invoker)?; for argument in arguments { self.analyze_expression(argument)?; } } Expression::FieldAccess(field_access_expression) => { let FieldAccessExpression { container, .. } = field_access_expression.inner.as_ref(); self.analyze_expression(container)?; } Expression::Grouped(expression) => { self.analyze_expression(expression.inner.as_ref())?; } Expression::Identifier(identifier) => { let found = self .context .update_last_position(&identifier.inner, identifier.position); if !found { return Err(AnalysisError::UndefinedVariable { identifier: identifier.clone(), }); } } Expression::If(if_expression) => self.analyze_if(&if_expression.inner)?, Expression::List(list_expression) => match list_expression.inner.as_ref() { ListExpression::AutoFill { repeat_operand, length_operand, } => { self.analyze_expression(repeat_operand)?; self.analyze_expression(length_operand)?; } ListExpression::Ordered(expressions) => { for expression in expressions { self.analyze_expression(expression)?; } } }, Expression::ListIndex(list_index_expression) => { let ListIndexExpression { list, index } = list_index_expression.inner.as_ref(); self.analyze_expression(list)?; self.analyze_expression(index)?; } Expression::Literal(_) => { // Literals don't need to be analyzed } Expression::Loop(loop_expression) => match loop_expression.inner.as_ref() { LoopExpression::Infinite { block } => self.analyze_block(&block.inner)?, LoopExpression::While { condition, block } => { self.analyze_expression(condition)?; self.analyze_block(&block.inner)?; } LoopExpression::For { iterator, block, .. } => { self.analyze_expression(iterator)?; self.analyze_block(&block.inner)?; } }, Expression::Map(map_expression) => { let MapExpression { pairs } = map_expression.inner.as_ref(); for (_, expression) in pairs { self.analyze_expression(expression)?; } } Expression::Operator(operator_expression) => match operator_expression.inner.as_ref() { OperatorExpression::Assignment { assignee, value } => { self.analyze_expression(assignee)?; self.analyze_expression(value)?; } OperatorExpression::Comparison { left, right, .. } => { self.analyze_expression(left)?; self.analyze_expression(right)?; } OperatorExpression::CompoundAssignment { assignee, modifier, .. } => { self.analyze_expression(assignee)?; self.analyze_expression(modifier)?; } OperatorExpression::ErrorPropagation(_) => todo!(), OperatorExpression::Negation(expression) => { self.analyze_expression(expression)?; } OperatorExpression::Not(expression) => { self.analyze_expression(expression)?; } OperatorExpression::Math { left, right, .. } => { self.analyze_expression(left)?; self.analyze_expression(right)?; } OperatorExpression::Logic { left, right, .. } => { self.analyze_expression(left)?; self.analyze_expression(right)?; } }, Expression::Range(range_expression) => match range_expression.inner.as_ref() { RangeExpression::Exclusive { start, end } => { self.analyze_expression(start)?; self.analyze_expression(end)?; } RangeExpression::Inclusive { start, end } => { self.analyze_expression(start)?; self.analyze_expression(end)?; } }, Expression::Struct(struct_expression) => match struct_expression.inner.as_ref() { StructExpression::Unit { name } => { let found = self .context .update_last_position(&name.inner, name.position); if !found { return Err(AnalysisError::UndefinedType { identifier: name.clone(), }); } } StructExpression::Fields { name, fields } => { let found = self .context .update_last_position(&name.inner, name.position); if !found { return Err(AnalysisError::UndefinedType { identifier: name.clone(), }); } for (_, expression) in fields { self.analyze_expression(expression)?; } } }, Expression::TupleAccess(tuple_access) => { let TupleAccessExpression { tuple, .. } = tuple_access.inner.as_ref(); self.analyze_expression(tuple)?; } } Ok(()) } fn analyze_block(&mut self, block_expression: &BlockExpression) -> Result<(), AnalysisError> { match block_expression { BlockExpression::Async(statements) => { for statement in statements { self.analyze_statement(statement)?; } } BlockExpression::Sync(statements) => { for statement in statements { self.analyze_statement(statement)?; } } } Ok(()) } fn analyze_if(&mut self, if_expression: &IfExpression) -> Result<(), AnalysisError> { match if_expression { IfExpression::If { condition, if_block, } => { self.analyze_expression(condition)?; self.analyze_block(&if_block.inner)?; } IfExpression::IfElse { condition, if_block, r#else, } => { self.analyze_expression(condition)?; self.analyze_block(&if_block.inner)?; match r#else { ElseExpression::Block(block_expression) => { self.analyze_block(&block_expression.inner)?; } ElseExpression::If(if_expression) => { self.analyze_if(&if_expression.inner)?; } } } } Ok(()) } } #[derive(Clone, Debug, PartialEq)] pub enum AnalysisError { ExpectedBoolean { actual: Statement, }, ExpectedIdentifier { actual: Statement, }, ExpectedIdentifierOrString { actual: Statement, }, ExpectedIntegerOrRange { actual: Statement, }, ExpectedList { actual: Statement, }, ExpectedMap { actual: Statement, }, ExpectedValue { actual: Statement, }, ExpectedValueArgumentCount { expected: usize, actual: usize, position: Span, }, IndexOutOfBounds { list: Statement, index: Statement, index_value: usize, length: usize, }, TypeConflict { actual_statement: Statement, actual_type: Type, expected: Type, }, UndefinedField { identifier: Statement, statement: Statement, }, UndefinedType { identifier: Node, }, UnexpectedIdentifier { identifier: Node, }, UnexectedString { actual: Statement, }, UndefinedVariable { identifier: Node, }, } impl AnalysisError { pub fn position(&self) -> Span { match self { AnalysisError::ExpectedBoolean { actual } => actual.position(), AnalysisError::ExpectedIdentifier { actual } => actual.position(), AnalysisError::ExpectedIdentifierOrString { actual } => actual.position(), AnalysisError::ExpectedIntegerOrRange { actual } => actual.position(), AnalysisError::ExpectedList { actual } => actual.position(), AnalysisError::ExpectedMap { actual } => actual.position(), AnalysisError::ExpectedValue { actual } => actual.position(), AnalysisError::ExpectedValueArgumentCount { position, .. } => *position, AnalysisError::IndexOutOfBounds { index, .. } => index.position(), AnalysisError::TypeConflict { actual_statement, .. } => actual_statement.position(), AnalysisError::UndefinedField { identifier, .. } => identifier.position(), AnalysisError::UndefinedType { identifier } => identifier.position, AnalysisError::UndefinedVariable { identifier } => identifier.position, AnalysisError::UnexpectedIdentifier { identifier } => identifier.position, AnalysisError::UnexectedString { actual } => actual.position(), } } } impl Error for AnalysisError {} impl Display for AnalysisError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { AnalysisError::ExpectedBoolean { actual, .. } => { write!(f, "Expected boolean, found {}", actual) } AnalysisError::ExpectedIdentifier { actual, .. } => { write!(f, "Expected identifier, found {}", actual) } AnalysisError::ExpectedIdentifierOrString { actual } => { write!(f, "Expected identifier or string, found {}", actual) } AnalysisError::ExpectedIntegerOrRange { actual, .. } => { write!(f, "Expected integer or range, found {}", actual) } AnalysisError::ExpectedList { actual } => write!(f, "Expected list, found {}", actual), AnalysisError::ExpectedMap { actual } => write!(f, "Expected map, found {}", actual), AnalysisError::ExpectedValue { actual, .. } => { write!(f, "Expected value, found {}", actual) } AnalysisError::ExpectedValueArgumentCount { expected, actual, .. } => write!(f, "Expected {} value arguments, found {}", expected, actual), AnalysisError::IndexOutOfBounds { list, index_value, length, .. } => write!( f, "Index {} out of bounds for list {} with length {}", index_value, list, length ), AnalysisError::TypeConflict { actual_statement, actual_type, expected, } => { write!( f, "Expected type {}, found {}, which has type {}", expected, actual_statement, actual_type ) } AnalysisError::UndefinedField { identifier, statement: map, } => { write!(f, "Undefined field {} in map {}", identifier, map) } AnalysisError::UndefinedType { identifier } => { write!(f, "Undefined type {}", identifier) } AnalysisError::UndefinedVariable { identifier } => { write!(f, "Undefined variable {}", identifier) } AnalysisError::UnexpectedIdentifier { identifier, .. } => { write!(f, "Unexpected identifier {}", identifier) } AnalysisError::UnexectedString { actual, .. } => { write!(f, "Unexpected string {}", actual) } } } } #[cfg(test)] mod tests { use crate::{Identifier, Value}; use super::*; #[test] fn add_assign_wrong_type() { let source = " a = 1 a += 1.0 "; assert_eq!(analyze(source), todo!()); } #[test] fn subtract_assign_wrong_type() { let source = " a = 1 a -= 1.0 "; assert_eq!(analyze(source), todo!()); } #[test] fn tuple_struct_with_wrong_field_types() { let source = " struct Foo(int, float) Foo(1, 2) "; assert_eq!(analyze(source), todo!()); } #[test] fn constant_list_index_out_of_bounds() { let source = "[1, 2, 3][3]"; assert_eq!(analyze(source), todo!()); } #[test] fn nonexistant_field_identifier() { let source = "{ x = 1 }.y"; assert_eq!(analyze(source), todo!()); } #[test] fn nonexistant_field_string() { let source = "{ x = 1 }.'y'"; assert_eq!(analyze(source), todo!()); } #[test] fn malformed_list_index() { let source = "[1, 2, 3]['foo']"; assert_eq!(analyze(source), todo!()); } #[test] fn malformed_field_access() { let source = "{ x = 1 }.0"; assert_eq!(analyze(source), todo!()); } #[test] fn length_no_arguments() { let source = "length()"; assert_eq!(analyze(source), todo!()); } #[test] fn float_plus_integer() { let source = "42.0 + 2"; assert_eq!(analyze(source), todo!()); } #[test] fn integer_plus_boolean() { let source = "42 + true"; assert_eq!(analyze(source), todo!()); } #[test] fn is_even_expects_number() { let source = "is_even('hello')"; assert_eq!(analyze(source), todo!()); } #[test] fn is_odd_expects_number() { let source = "is_odd('hello')"; assert_eq!(analyze(source), todo!()); } #[test] fn undefined_variable() { let source = "foo"; assert_eq!(analyze(source), todo!()); } }