use std::{ fmt::{self, Display, Formatter}, mem::{replace, take}, num::{ParseFloatError, ParseIntError}, }; use colored::Colorize; use serde::{Deserialize, Serialize}; use crate::{ AnnotatedError, Chunk, ChunkError, DustError, FunctionType, Identifier, Instruction, LexError, Lexer, Operation, Span, Token, TokenKind, TokenOwned, Type, Value, }; pub fn parse(source: &str) -> Result { let lexer = Lexer::new(source); let mut parser = Parser::new(lexer).map_err(|error| DustError::Parse { error, source })?; while !parser.is_eof() { parser .parse_statement( Allowed { assignment: true, explicit_return: false, implicit_return: true, }, Context::None, ) .map_err(|error| DustError::Parse { error, source })?; } Ok(parser.take_chunk()) } #[derive(Debug, Clone, Eq, PartialEq, PartialOrd, Ord, Serialize)] pub struct Parser<'src> { chunk: Chunk, lexer: Lexer<'src>, current_register: u8, current_token: Token<'src>, current_position: Span, previous_token: Token<'src>, previous_position: Span, parsed_expression: bool, latest_value_type: Option, } impl<'src> Parser<'src> { pub fn new(mut lexer: Lexer<'src>) -> Result { let (current_token, current_position) = lexer.next_token()?; log::info!( "Begin chunk with {} at {}", current_token.to_string().bold(), current_position.to_string() ); Ok(Parser { lexer, chunk: Chunk::new(), current_register: 0, current_token, current_position, previous_token: Token::Eof, previous_position: Span(0, 0), parsed_expression: false, latest_value_type: None, }) } pub fn take_chunk(self) -> Chunk { log::info!("End chunk"); self.chunk } fn is_eof(&self) -> bool { matches!(self.current_token, Token::Eof) } fn increment_register(&mut self) -> Result<(), ParseError> { let current = self.current_register; if current == u8::MAX { Err(ParseError::RegisterOverflow { position: self.current_position, }) } else { self.current_register += 1; Ok(()) } } fn advance(&mut self) -> Result<(), ParseError> { if self.is_eof() { return Ok(()); } let (new_token, position) = self.lexer.next_token()?; log::info!( "Parsing {} at {}", new_token.to_string().bold(), position.to_string() ); self.previous_token = replace(&mut self.current_token, new_token); self.previous_position = replace(&mut self.current_position, position); Ok(()) } fn allow(&mut self, allowed: Token) -> Result { if self.current_token == allowed { self.advance()?; Ok(true) } else { Ok(false) } } fn expect(&mut self, expected: Token) -> Result<(), ParseError> { if self.current_token == expected { self.advance() } else { Err(ParseError::ExpectedToken { expected: expected.kind(), found: self.current_token.to_owned(), position: self.current_position, }) } } fn emit_instruction(&mut self, instruction: Instruction, position: Span) { log::debug!( "Emitting {} at {}", instruction.operation().to_string().bold(), position.to_string() ); self.chunk.push_instruction(instruction, position); } fn emit_constant(&mut self, value: Value, position: Span) -> Result<(), ParseError> { self.latest_value_type = Some(value.r#type()); let constant_index = self.chunk.push_constant(value, position)?; self.emit_instruction( Instruction::load_constant(self.current_register, constant_index, false), position, ); Ok(()) } fn parse_boolean(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::Boolean(text) = self.current_token { self.advance()?; let boolean = text.parse::().unwrap(); self.emit_instruction( Instruction::load_boolean(self.current_register, boolean, false), position, ); self.latest_value_type = Some(Type::Boolean); self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::Boolean, found: self.current_token.to_owned(), position, }) } } fn parse_byte(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::Byte(text) = self.current_token { self.advance()?; let byte = u8::from_str_radix(&text[2..], 16) .map_err(|error| ParseError::ParseIntError { error, position })?; let value = Value::byte(byte); self.emit_constant(value, position)?; self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::Byte, found: self.current_token.to_owned(), position, }) } } fn parse_character(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::Character(character) = self.current_token { self.advance()?; let value = Value::character(character); self.emit_constant(value, position)?; self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::Character, found: self.current_token.to_owned(), position, }) } } fn parse_float(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::Float(text) = self.current_token { self.advance()?; let float = text .parse::() .map_err(|error| ParseError::ParseFloatError { error, position: self.previous_position, })?; let value = Value::float(float); self.emit_constant(value, position)?; self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::Float, found: self.current_token.to_owned(), position, }) } } fn parse_integer(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::Integer(text) = self.current_token { self.advance()?; let integer = text .parse::() .map_err(|error| ParseError::ParseIntError { error, position: self.previous_position, })?; let value = Value::integer(integer); self.emit_constant(value, position)?; self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::Integer, found: self.current_token.to_owned(), position, }) } } fn parse_string(&mut self, _: Allowed) -> Result<(), ParseError> { let position = self.current_position; if let Token::String(text) = self.current_token { self.advance()?; let value = Value::string(text); self.emit_constant(value, position)?; self.parsed_expression = true; Ok(()) } else { Err(ParseError::ExpectedToken { expected: TokenKind::String, found: self.current_token.to_owned(), position, }) } } fn parse_grouped(&mut self, _: Allowed) -> Result<(), ParseError> { self.allow(Token::LeftParenthesis)?; self.parse_expression()?; self.expect(Token::RightParenthesis)?; self.parsed_expression = true; Ok(()) } fn parse_unary(&mut self, _: Allowed) -> Result<(), ParseError> { let operator = self.current_token; let operator_position = self.current_position; self.advance()?; self.parse_expression()?; let (previous_instruction, previous_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back, is_constant, argument) = { match previous_instruction.operation() { Operation::GetLocal => (false, false, previous_instruction.a()), Operation::LoadConstant => (false, true, previous_instruction.a()), Operation::LoadBoolean => (true, false, previous_instruction.a()), Operation::Close => { return Err(ParseError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => (true, false, previous_instruction.a()), } }; if push_back { self.increment_register()?; } let mut instruction = match operator.kind() { TokenKind::Bang => Instruction::not(self.current_register, argument), TokenKind::Minus => Instruction::negate(self.current_register, argument), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[TokenKind::Bang, TokenKind::Minus], found: operator.to_owned(), position: operator_position, }) } }; if is_constant { instruction.set_b_is_constant(); } if push_back { self.emit_instruction(previous_instruction, previous_position); } self.emit_instruction(instruction, operator_position); self.parsed_expression = true; Ok(()) } fn handle_binary_argument( &mut self, instruction: &Instruction, ) -> Result<(bool, bool, bool, u8), ParseError> { let mut push_back = false; let mut is_constant = false; let mut is_mutable_local = false; let argument = match instruction.operation() { Operation::GetLocal => { let local_index = instruction.b(); let local = self.chunk.get_local(local_index, self.current_position)?; is_mutable_local = local.is_mutable; local.register_index } Operation::LoadConstant => { is_constant = true; instruction.b() } Operation::LoadBoolean => instruction.a(), Operation::Close => { return Err(ParseError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => { push_back = true; instruction.a() } }; Ok((push_back, is_constant, is_mutable_local, argument)) } fn parse_math_binary(&mut self) -> Result<(), ParseError> { let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_left, left_is_constant, left_is_mutable_local, left) = self.handle_binary_argument(&left_instruction)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); if let TokenKind::PlusEqual | TokenKind::MinusEqual | TokenKind::StarEqual | TokenKind::SlashEqual = operator.kind() { if !left_is_mutable_local { return Err(ParseError::ExpectedMutableVariable { found: self.previous_token.to_owned(), position: left_position, }); } } self.advance()?; self.parse_sub_expression(&rule.precedence)?; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_right, right_is_constant, right_is_mutable_local, right) = self.handle_binary_argument(&right_instruction)?; let register = if left_is_mutable_local { left } else if right_is_mutable_local { right } else { let current = self.current_register; self.increment_register()?; current }; let (mut new_instruction, is_expression) = match operator.kind() { TokenKind::Plus => (Instruction::add(register, left, right), true), TokenKind::PlusEqual => (Instruction::add(register, left, right), false), TokenKind::Minus => (Instruction::subtract(register, left, right), true), TokenKind::MinusEqual => (Instruction::subtract(register, left, right), false), TokenKind::Star => (Instruction::multiply(register, left, right), true), TokenKind::StarEqual => (Instruction::multiply(register, left, right), false), TokenKind::Slash => (Instruction::divide(register, left, right), true), TokenKind::SlashEqual => (Instruction::divide(register, left, right), false), TokenKind::Percent => (Instruction::modulo(register, left, right), true), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[ TokenKind::Plus, TokenKind::PlusEqual, TokenKind::Minus, TokenKind::MinusEqual, TokenKind::Star, TokenKind::StarEqual, TokenKind::Slash, TokenKind::SlashEqual, TokenKind::Percent, ], found: operator.to_owned(), position: operator_position, }) } }; self.parsed_expression = is_expression; if left_is_constant { new_instruction.set_b_is_constant(); } if right_is_constant { new_instruction.set_c_is_constant(); } let mut instructions = if !push_back_left && !push_back_right { self.emit_instruction(new_instruction, operator_position); return Ok(()); } else if push_back_right && !push_back_left { vec![ (right_instruction, right_position), (new_instruction, operator_position), ] } else if push_back_left && !push_back_right { vec![ (left_instruction, left_position), (new_instruction, operator_position), ] } else { vec![ (new_instruction, operator_position), (left_instruction, left_position), (right_instruction, right_position), ] }; while let Ok(operation) = self.chunk.get_last_operation() { if operation.is_math() { let (instruction, position) = self.chunk.pop_instruction(self.current_position)?; instructions.push((instruction, position)); } else { break; } } instructions.sort_by_key(|(instruction, _)| instruction.a()); for (instruction, position) in instructions { self.emit_instruction(instruction, position); } Ok(()) } fn parse_comparison_binary(&mut self) -> Result<(), ParseError> { if let [Some(Operation::Jump), Some(Operation::Equal) | Some(Operation::Less) | Some(Operation::LessEqual)] = self.chunk.get_last_n_operations() { return Err(ParseError::CannotChainComparison { position: self.current_position, }); } let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_left, left_is_constant, _, left) = self.handle_binary_argument(&left_instruction)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); self.advance()?; self.parse_sub_expression(&rule.precedence)?; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_right, right_is_constant, _, right) = self.handle_binary_argument(&right_instruction)?; let mut instruction = match operator { Token::DoubleEqual => Instruction::equal(true, left.saturating_sub(1), right), Token::BangEqual => Instruction::equal(false, left.saturating_sub(1), right), Token::Less => Instruction::less(true, left.saturating_sub(1), right), Token::LessEqual => Instruction::less_equal(true, left.saturating_sub(1), right), Token::Greater => Instruction::less_equal(false, left.saturating_sub(1), right), Token::GreaterEqual => Instruction::less(false, left.saturating_sub(1), right), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[ TokenKind::DoubleEqual, TokenKind::BangEqual, TokenKind::Less, TokenKind::LessEqual, TokenKind::Greater, TokenKind::GreaterEqual, ], found: operator.to_owned(), position: operator_position, }) } }; self.parsed_expression = true; if left_is_constant { instruction.set_b_is_constant(); } if right_is_constant { instruction.set_c_is_constant(); } if push_back_left { self.emit_instruction(left_instruction, left_position); } if push_back_right { self.emit_instruction(right_instruction, right_position); } self.emit_instruction(instruction, operator_position); self.emit_instruction(Instruction::jump(1, true), operator_position); Ok(()) } fn parse_logical_binary(&mut self) -> Result<(), ParseError> { let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); let instruction = match operator { Token::DoubleAmpersand => Instruction::test(left_instruction.a(), false), Token::DoublePipe => Instruction::test(left_instruction.a(), true), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[TokenKind::DoubleAmpersand, TokenKind::DoublePipe], found: operator.to_owned(), position: operator_position, }) } }; self.increment_register()?; self.advance()?; self.parse_sub_expression(&rule.precedence)?; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; self.emit_instruction(left_instruction, left_position); self.emit_instruction(instruction, operator_position); self.emit_instruction(Instruction::jump(1, true), operator_position); self.emit_instruction(right_instruction, right_position); self.parsed_expression = true; Ok(()) } fn parse_variable(&mut self, allowed: Allowed) -> Result<(), ParseError> { let token = self.current_token; let start_position = self.current_position; self.advance()?; let local_index = self.parse_identifier_from(token, start_position)?; if self.allow(Token::Equal)? { if !allowed.assignment { return Err(ParseError::InvalidAssignmentTarget { found: self.current_token.to_owned(), position: self.current_position, }); } let is_mutable = self .chunk .get_local(local_index, start_position)? .is_mutable; if !is_mutable { return Err(ParseError::CannotMutateImmutableVariable { identifier: self.chunk.get_identifier(local_index).cloned().unwrap(), position: start_position, }); } self.parse_expression()?; let (mut previous_instruction, previous_position) = self.chunk.pop_instruction(self.current_position)?; if previous_instruction.operation().is_math() { let register_index = self .chunk .get_local(local_index, start_position)? .register_index; log::trace!("Condensing SET_LOCAL to binary math expression"); previous_instruction.set_a(register_index); self.emit_instruction(previous_instruction, self.current_position); return Ok(()); } self.emit_instruction(previous_instruction, previous_position); self.emit_instruction( Instruction::set_local(self.current_register, local_index), start_position, ); self.parsed_expression = false; } else { self.emit_instruction( Instruction::get_local(self.current_register, local_index), self.previous_position, ); self.parsed_expression = true; } Ok(()) } fn parse_identifier_from(&mut self, token: Token, position: Span) -> Result { if let Token::Identifier(text) = token { let identifier = Identifier::new(text); if let Ok(local_index) = self.chunk.get_local_index(&identifier, position) { Ok(local_index) } else { Err(ParseError::UndeclaredVariable { identifier, position, }) } } else { Err(ParseError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position, }) } } fn parse_type_from(&mut self, token: Token, position: Span) -> Result { match token { Token::Bool => Ok(Type::Boolean), Token::FloatKeyword => Ok(Type::Float), Token::Int => Ok(Type::Integer), Token::Str => Ok(Type::String { length: None }), _ => Err(ParseError::ExpectedTokenMultiple { expected: &[ TokenKind::Bool, TokenKind::FloatKeyword, TokenKind::Int, TokenKind::Str, ], found: self.current_token.to_owned(), position, }), } } fn parse_block(&mut self, allowed: Allowed) -> Result<(), ParseError> { self.advance()?; self.chunk.begin_scope(); while !self.allow(Token::RightCurlyBrace)? && !self.is_eof() { self.parse_statement(allowed, Context::None)?; } self.chunk.end_scope(); Ok(()) } fn parse_list(&mut self, _: Allowed) -> Result<(), ParseError> { let start = self.current_position.0; self.advance()?; let start_register = self.current_register; while !self.allow(Token::RightSquareBrace)? && !self.is_eof() { let next_register = self.current_register; self.parse_expression()?; if let Operation::LoadConstant = self.chunk.get_last_operation()? { self.increment_register()?; } if next_register != self.current_register.saturating_sub(1) { self.emit_instruction( Instruction::close(next_register, self.current_register.saturating_sub(1)), self.current_position, ); } self.allow(Token::Comma)?; } let end_register = self.current_register - 1; let end = self.current_position.1; self.emit_instruction( Instruction::load_list(self.current_register, start_register, end_register), Span(start, end), ); self.increment_register()?; self.parsed_expression = true; Ok(()) } fn parse_if(&mut self, allowed: Allowed) -> Result<(), ParseError> { self.advance()?; self.parse_expression()?; let length = self.chunk.len(); let is_explicit_boolean = matches!(self.previous_token, Token::Boolean(_)) && length == self.chunk.len() - 1; if is_explicit_boolean { self.emit_instruction( Instruction::test(self.current_register, false), self.current_position, ); } let block_allowed = Allowed { assignment: allowed.assignment, explicit_return: allowed.explicit_return, implicit_return: false, }; if let Token::LeftCurlyBrace = self.current_token { self.parse_block(block_allowed)?; } let last_operation = self.chunk.get_last_operation()?; if let (Operation::LoadConstant | Operation::LoadBoolean, Token::Else) = (last_operation, self.current_token) { let (mut load_constant, load_constant_position) = self.chunk.pop_instruction(self.current_position)?; load_constant.set_c_to_boolean(true); self.emit_instruction(load_constant, load_constant_position); } if self.allow(Token::Else)? { if let Token::If = self.current_token { self.parse_if(allowed)?; } if let Token::LeftCurlyBrace = self.current_token { self.parse_block(block_allowed)?; self.parsed_expression = true; } } else { self.parsed_expression = false; } Ok(()) } fn parse_while(&mut self, allowed: Allowed) -> Result<(), ParseError> { self.advance()?; let jump_start = self.chunk.len(); self.parse_expression()?; self.parse_block(Allowed { assignment: true, explicit_return: allowed.explicit_return, implicit_return: false, })?; let jump_end = self.chunk.len(); let jump_distance = jump_end.abs_diff(jump_start) as u8; let jump_back = Instruction::jump(jump_distance, false); let jump_over_index = self.chunk.find_last_instruction(Operation::Jump); if let Some(index) = jump_over_index { let (_, jump_over_position) = self.chunk.remove_instruction(index); let jump_over = Instruction::jump(jump_distance - 1, true); self.chunk .insert_instruction(index, jump_over, jump_over_position); } self.chunk .insert_instruction(jump_end, jump_back, self.current_position); self.parsed_expression = false; Ok(()) } fn parse_statement(&mut self, allowed: Allowed, context: Context) -> Result<(), ParseError> { self.parse( Precedence::None, Allowed { assignment: true, explicit_return: true, implicit_return: true, }, )?; let previous_instructions = self.chunk.get_last_n_instructions(); if let [Some((jump, _)), Some((comparison, comparison_position))] = previous_instructions { if let (Operation::Jump, Operation::Equal | Operation::Less | Operation::LessEqual) = (jump.operation(), comparison.operation()) { if matches!(self.current_token, Token::Eof | Token::RightCurlyBrace) || context == Context::Assignment { let comparison_position = *comparison_position; self.emit_instruction( Instruction::load_boolean(self.current_register, true, true), comparison_position, ); self.emit_instruction( Instruction::load_boolean(self.current_register, false, false), comparison_position, ); } } } let returned = self.chunk.get_last_operation()? == Operation::Return; let has_semicolon = self.allow(Token::Semicolon)?; if allowed.implicit_return && self.parsed_expression && !returned && !has_semicolon { self.emit_instruction(Instruction::r#return(true), self.current_position); } Ok(()) } fn parse_expression(&mut self) -> Result<(), ParseError> { self.parse( Precedence::None, Allowed { assignment: false, explicit_return: false, implicit_return: false, }, ) } fn parse_sub_expression(&mut self, precedence: &Precedence) -> Result<(), ParseError> { self.parse( precedence.increment(), Allowed { assignment: false, explicit_return: false, implicit_return: false, }, ) } fn parse_return(&mut self, allowed: Allowed) -> Result<(), ParseError> { if !allowed.explicit_return { return Err(ParseError::UnexpectedReturn { position: self.current_position, }); } let start = self.current_position.0; self.advance()?; let has_return_value = if matches!( self.current_token, Token::Semicolon | Token::RightCurlyBrace ) { false } else { self.parse_expression()?; true }; let end = self.current_position.1; self.emit_instruction(Instruction::r#return(has_return_value), Span(start, end)); self.parsed_expression = false; Ok(()) } fn parse_let_statement(&mut self, allowed: Allowed) -> Result<(), ParseError> { if !allowed.assignment { return Err(ParseError::ExpectedExpression { found: self.current_token.to_owned(), position: self.current_position, }); } self.advance()?; let is_mutable = self.allow(Token::Mut)?; let position = self.current_position; let identifier = if let Token::Identifier(text) = self.current_token { self.advance()?; Identifier::new(text) } else { return Err(ParseError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position, }); }; let r#type = if self.allow(Token::Colon)? { let r#type = self.parse_type_from(self.current_token, self.current_position)?; self.advance()?; Some(r#type) } else { None }; let register = self.current_register; self.expect(Token::Equal)?; self.parse_statement( Allowed { assignment: false, explicit_return: true, implicit_return: false, }, Context::Assignment, )?; if self.current_register == register { self.increment_register()?; } let local_index = self .chunk .declare_local(identifier, r#type, is_mutable, register, position)?; self.emit_instruction( Instruction::define_local(register, local_index, is_mutable), position, ); self.parsed_expression = false; Ok(()) } fn parse_function(&mut self, _: Allowed) -> Result<(), ParseError> { let function_start = self.current_position.0; let mut function_parser = Parser::new(self.lexer)?; function_parser.expect(Token::LeftParenthesis)?; let mut value_parameters: Option> = None; while function_parser.current_token != Token::RightParenthesis { let start = function_parser.current_position.0; let is_mutable = function_parser.allow(Token::Mut)?; let parameter = if let Token::Identifier(text) = function_parser.current_token { function_parser.advance()?; Identifier::new(text) } else { return Err(ParseError::ExpectedToken { expected: TokenKind::Identifier, found: function_parser.current_token.to_owned(), position: function_parser.current_position, }); }; function_parser.expect(Token::Colon)?; let r#type = function_parser.parse_type_from( function_parser.current_token, function_parser.current_position, )?; function_parser.advance()?; let end = function_parser.current_position.1; if let Some(value_parameters) = value_parameters.as_mut() { value_parameters.push((parameter.clone(), r#type.clone())); } else { value_parameters = Some(vec![(parameter.clone(), r#type.clone())]); }; function_parser.chunk.declare_local( parameter, Some(r#type), is_mutable, function_parser.current_register, Span(start, end), )?; function_parser.increment_register()?; function_parser.allow(Token::Comma)?; } function_parser.advance()?; function_parser.expect(Token::LeftCurlyBrace)?; while function_parser.current_token != Token::RightCurlyBrace { function_parser.parse_statement( Allowed { assignment: true, explicit_return: true, implicit_return: true, }, Context::None, )?; } function_parser.advance()?; self.previous_token = function_parser.previous_token; self.previous_position = function_parser.previous_position; self.current_token = function_parser.current_token; self.current_position = function_parser.current_position; let return_type = take(&mut self.latest_value_type).map(Box::new); let function_type = FunctionType { type_parameters: None, value_parameters, return_type, }; let function = Value::function(function_parser.chunk, function_type); let function_end = self.current_position.1; self.lexer.skip_to(function_end); self.emit_constant(function, Span(function_start, function_end))?; self.parsed_expression = true; Ok(()) } fn parse_call(&mut self) -> Result<(), ParseError> { let last_instruction = self.chunk.get_last_instruction()?.0; if !last_instruction.is_expression() { return Err(ParseError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } let start = self.current_position.0; self.advance()?; let function_register = self.current_register; self.increment_register()?; while !self.allow(Token::RightParenthesis)? { self.parse_expression()?; self.allow(Token::Comma)?; } let end = self.current_position.1; self.emit_instruction( Instruction::call(self.current_register, function_register), Span(start, end), ); self.increment_register()?; self.parsed_expression = true; Ok(()) } fn parse(&mut self, precedence: Precedence, allowed: Allowed) -> Result<(), ParseError> { if let Some(prefix_parser) = ParseRule::from(&self.current_token).prefix { log::debug!( "{} is {precedence} prefix", self.current_token.to_string().bold(), ); prefix_parser(self, allowed)?; } let mut infix_rule = ParseRule::from(&self.current_token); while precedence <= infix_rule.precedence { if let Some(infix_parser) = infix_rule.infix { log::debug!( "{} is {precedence} infix", self.current_token.to_string().bold(), ); if !allowed.assignment && self.current_token == Token::Equal { return Err(ParseError::InvalidAssignmentTarget { found: self.current_token.to_owned(), position: self.current_position, }); } infix_parser(self)?; } else { break; } infix_rule = ParseRule::from(&self.current_token); } Ok(()) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] pub enum Precedence { None, Assignment, Conditional, LogicalOr, LogicalAnd, Equality, Comparison, Term, Factor, Unary, Call, Primary, } impl Precedence { fn increment(&self) -> Self { match self { Precedence::None => Precedence::Assignment, Precedence::Assignment => Precedence::Conditional, Precedence::Conditional => Precedence::LogicalOr, Precedence::LogicalOr => Precedence::LogicalAnd, Precedence::LogicalAnd => Precedence::Equality, Precedence::Equality => Precedence::Comparison, Precedence::Comparison => Precedence::Term, Precedence::Term => Precedence::Factor, Precedence::Factor => Precedence::Unary, Precedence::Unary => Precedence::Call, Precedence::Call => Precedence::Primary, Precedence::Primary => Precedence::Primary, } } } impl Display for Precedence { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{:?}", self) } } #[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)] pub enum Context { None, Assignment, } #[derive(Debug, Clone, Copy)] struct Allowed { pub assignment: bool, pub explicit_return: bool, pub implicit_return: bool, } type PrefixFunction<'a> = fn(&mut Parser<'a>, Allowed) -> Result<(), ParseError>; type InfixFunction<'a> = fn(&mut Parser<'a>) -> Result<(), ParseError>; #[derive(Debug, Clone, Copy)] struct ParseRule<'a> { pub prefix: Option>, pub infix: Option>, pub precedence: Precedence, } impl From<&Token<'_>> for ParseRule<'_> { fn from(token: &Token) -> Self { match token { Token::Async => todo!(), Token::Bang => ParseRule { prefix: Some(Parser::parse_unary), infix: None, precedence: Precedence::Unary, }, Token::BangEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Equality, }, Token::Bool => todo!(), Token::Boolean(_) => ParseRule { prefix: Some(Parser::parse_boolean), infix: None, precedence: Precedence::None, }, Token::Break => todo!(), Token::Byte(_) => ParseRule { prefix: Some(Parser::parse_byte), infix: None, precedence: Precedence::None, }, Token::Character(_) => ParseRule { prefix: Some(Parser::parse_character), infix: None, precedence: Precedence::None, }, Token::Colon => todo!(), Token::Comma => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Dot => todo!(), Token::DoubleAmpersand => ParseRule { prefix: None, infix: Some(Parser::parse_logical_binary), precedence: Precedence::LogicalAnd, }, Token::DoubleEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Equality, }, Token::DoublePipe => ParseRule { prefix: None, infix: Some(Parser::parse_logical_binary), precedence: Precedence::LogicalOr, }, Token::DoubleDot => todo!(), Token::Eof => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Equal => ParseRule { prefix: None, infix: None, precedence: Precedence::Assignment, }, Token::Else => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Float(_) => ParseRule { prefix: Some(Parser::parse_float), infix: None, precedence: Precedence::None, }, Token::FloatKeyword => todo!(), Token::Fn => ParseRule { prefix: Some(Parser::parse_function), infix: None, precedence: Precedence::None, }, Token::Greater => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::GreaterEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::Identifier(_) => ParseRule { prefix: Some(Parser::parse_variable), infix: None, precedence: Precedence::None, }, Token::If => ParseRule { prefix: Some(Parser::parse_if), infix: None, precedence: Precedence::None, }, Token::Int => todo!(), Token::Integer(_) => ParseRule { prefix: Some(Parser::parse_integer), infix: None, precedence: Precedence::None, }, Token::LeftCurlyBrace => ParseRule { prefix: Some(Parser::parse_block), infix: None, precedence: Precedence::None, }, Token::LeftParenthesis => ParseRule { prefix: Some(Parser::parse_grouped), infix: Some(Parser::parse_call), precedence: Precedence::Call, }, Token::LeftSquareBrace => ParseRule { prefix: Some(Parser::parse_list), infix: None, precedence: Precedence::None, }, Token::Less => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::LessEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::Let => ParseRule { prefix: Some(Parser::parse_let_statement), infix: None, precedence: Precedence::None, }, Token::Loop => todo!(), Token::Map => todo!(), Token::Minus => ParseRule { prefix: Some(Parser::parse_unary), infix: Some(Parser::parse_math_binary), precedence: Precedence::Term, }, Token::MinusEqual => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Assignment, }, Token::Mut => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Percent => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, Token::PercentEqual => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Assignment, }, Token::Plus => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Term, }, Token::PlusEqual => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Assignment, }, Token::Return => ParseRule { prefix: Some(Parser::parse_return), infix: None, precedence: Precedence::None, }, Token::RightCurlyBrace => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::RightParenthesis => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::RightSquareBrace => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Semicolon => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Slash => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, Token::SlashEqual => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Assignment, }, Token::Star => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, Token::StarEqual => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Assignment, }, Token::Str => todo!(), Token::String(_) => ParseRule { prefix: Some(Parser::parse_string), infix: None, precedence: Precedence::None, }, Token::Struct => todo!(), Token::While => ParseRule { prefix: Some(Parser::parse_while), infix: None, precedence: Precedence::None, }, } } } #[derive(Debug, PartialEq)] pub enum ParseError { CannotChainComparison { position: Span, }, CannotMutateImmutableVariable { identifier: Identifier, position: Span, }, ExpectedExpression { found: TokenOwned, position: Span, }, ExpectedToken { expected: TokenKind, found: TokenOwned, position: Span, }, ExpectedTokenMultiple { expected: &'static [TokenKind], found: TokenOwned, position: Span, }, ExpectedMutableVariable { found: TokenOwned, position: Span, }, InvalidAssignmentTarget { found: TokenOwned, position: Span, }, UndeclaredVariable { identifier: Identifier, position: Span, }, UnexpectedReturn { position: Span, }, RegisterOverflow { position: Span, }, RegisterUnderflow { position: Span, }, // Wrappers around foreign errors Chunk(ChunkError), Lex(LexError), ParseFloatError { error: ParseFloatError, position: Span, }, ParseIntError { error: ParseIntError, position: Span, }, } impl From for ParseError { fn from(error: ChunkError) -> Self { Self::Chunk(error) } } impl AnnotatedError for ParseError { fn title() -> &'static str { "Parse Error" } fn description(&self) -> &'static str { match self { Self::CannotChainComparison { .. } => "Cannot chain comparison", Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable", Self::ExpectedExpression { .. } => "Expected an expression", Self::ExpectedToken { .. } => "Expected a specific token", Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens", Self::ExpectedMutableVariable { .. } => "Expected a mutable variable", Self::InvalidAssignmentTarget { .. } => "Invalid assignment target", Self::UndeclaredVariable { .. } => "Undeclared variable", Self::UnexpectedReturn { .. } => "Unexpected return", Self::RegisterOverflow { .. } => "Register overflow", Self::RegisterUnderflow { .. } => "Register underflow", Self::ParseFloatError { .. } => "Failed to parse float", Self::ParseIntError { .. } => "Failed to parse integer", Self::Chunk(error) => error.description(), Self::Lex(error) => error.description(), } } fn details(&self) -> Option { match self { Self::CannotChainComparison { .. } => { Some("Cannot chain comparison operations".to_string()) } Self::CannotMutateImmutableVariable { identifier, .. } => { Some(format!("Cannot mutate immutable variable {identifier}")) } Self::ExpectedExpression { found, .. } => Some(format!("Found {found}")), Self::ExpectedToken { expected, found, .. } => Some(format!("Expected {expected} but found {found}")), Self::ExpectedTokenMultiple { expected, found, .. } => { let mut details = String::from("Expected"); for (index, token) in expected.iter().enumerate() { details.push_str(&format!(" {token}")); if index < expected.len() - 2 { details.push_str(", "); } if index == expected.len() - 2 { details.push_str(" or"); } } details.push_str(&format!(" but found {found}")); Some(details) } Self::ExpectedMutableVariable { found, .. } => { Some(format!("Expected mutable variable, found {found}")) } Self::InvalidAssignmentTarget { found, .. } => { Some(format!("Invalid assignment target, found {found}")) } Self::UndeclaredVariable { identifier, .. } => { Some(format!("Undeclared variable {identifier}")) } Self::UnexpectedReturn { .. } => None, Self::RegisterOverflow { .. } => None, Self::RegisterUnderflow { .. } => None, Self::ParseFloatError { error, .. } => Some(error.to_string()), Self::ParseIntError { error, .. } => Some(error.to_string()), Self::Chunk(error) => error.details(), Self::Lex(error) => error.details(), } } fn position(&self) -> Span { match self { Self::CannotChainComparison { position } => *position, Self::CannotMutateImmutableVariable { position, .. } => *position, Self::ExpectedExpression { position, .. } => *position, Self::ExpectedToken { position, .. } => *position, Self::ExpectedTokenMultiple { position, .. } => *position, Self::ExpectedMutableVariable { position, .. } => *position, Self::InvalidAssignmentTarget { position, .. } => *position, Self::UndeclaredVariable { position, .. } => *position, Self::UnexpectedReturn { position } => *position, Self::RegisterOverflow { position } => *position, Self::RegisterUnderflow { position } => *position, Self::ParseFloatError { position, .. } => *position, Self::ParseIntError { position, .. } => *position, Self::Chunk(error) => error.position(), Self::Lex(error) => error.position(), } } } impl From for ParseError { fn from(error: LexError) -> Self { Self::Lex(error) } }