//! Virtual machine for running the abstract syntax tree.
//!
//! This module provides three running option:
//! - `run` convenience function that takes a source code string and runs it
//! - `run_with_context` convenience function that takes a source code string and a context
//! - `Vm` struct that can be used to run an abstract syntax tree
use std::{
collections::BTreeMap,
fmt::{self, Display, Formatter},
};
use crate::{
parse, value::ValueInner, AbstractSyntaxTree, Analyzer, AssignmentOperator, BinaryOperator,
BuiltInFunctionError, Context, DustError, Identifier, Node, ParseError, Span, Statement,
Struct, StructType, Type, UnaryOperator, Value, ValueError,
};
/// Run the source code and return the result.
///
/// # Example
/// ```
/// # use dust_lang::vm::run;
/// # use dust_lang::value::Value;
/// let result = run("40 + 2");
///
/// assert_eq!(result, Ok(Some(Value::integer(42))));
/// ```
pub fn run(source: &str) -> Result, DustError> {
let context = Context::new();
run_with_context(source, context)
}
/// Run the source code with a context and return the result.
///
/// # Example
/// ```
/// # use dust_lang::{Context, Identifier, Value, run_with_context};
/// let context = Context::new();
///
/// context.set_value(Identifier::new("foo"), Value::integer(40));
/// context.update_last_position(&Identifier::new("foo"), (100, 100));
///
/// let result = run_with_context("foo + 2", context);
///
/// assert_eq!(result, Ok(Some(Value::integer(42))));
/// ```
pub fn run_with_context(source: &str, context: Context) -> Result , DustError> {
let abstract_syntax_tree = parse(source)?;
let mut analyzer = Analyzer::new(&abstract_syntax_tree, &context);
analyzer
.analyze()
.map_err(|analyzer_error| DustError::AnalyzerError {
analyzer_error,
source,
})?;
let mut vm = Vm::new(abstract_syntax_tree, context);
vm.run()
.map_err(|vm_error| DustError::VmError { vm_error, source })
}
/// Dust virtual machine.
///
/// **Warning**: Do not run an AbstractSyntaxTree that has not been analyzed *with the same
/// context*. Use the `run` or `run_with_context` functions to make sure the program is analyzed
/// before running it.
///
/// See the `run_with_context` function for an example of how to use the Analyzer and the VM.
pub struct Vm {
abstract_tree: AbstractSyntaxTree,
context: Context,
}
impl Vm {
pub fn new(abstract_tree: AbstractSyntaxTree, context: Context) -> Self {
Self {
abstract_tree,
context,
}
}
pub fn run(&mut self) -> Result , VmError> {
let mut previous_position = (0, 0);
let mut previous_value = None;
while let Some(statement) = self.abstract_tree.nodes.pop_front() {
let new_position = statement.position;
previous_value = self.run_statement(statement)?;
self.context.collect_garbage(previous_position.1);
previous_position = new_position;
}
self.context.collect_garbage(previous_position.1);
Ok(previous_value)
}
fn run_statement(&self, node: Node) -> Result, VmError> {
match node.inner {
Statement::Assignment {
identifier,
operator,
value,
} => match operator.inner {
AssignmentOperator::Assign => {
let position = value.position;
let value = if let Some(value) = self.run_statement(*value)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
self.context.set_value(identifier.inner, value);
Ok(None)
}
AssignmentOperator::AddAssign => {
let left_value = if let Some(value) = self.context.get_value(&identifier.inner)
{
value
} else {
return Err(VmError::UndefinedVariable { identifier });
};
let value_position = value.position;
let right_value = if let Some(value) = self.run_statement(*value)? {
value
} else {
return Err(VmError::ExpectedValue {
position: value_position,
});
};
let new_value = left_value.add(&right_value).map_err(|value_error| {
VmError::ValueError {
error: value_error,
position: (identifier.position.0, value_position.1),
}
})?;
self.context.set_value(identifier.inner, new_value);
Ok(None)
}
AssignmentOperator::SubtractAssign => {
todo!()
}
},
Statement::BinaryOperation {
left,
operator,
right,
} => {
let right_position = right.position;
if let BinaryOperator::FieldAccess = operator.inner {
let left_span = left.position;
let left_value = if let Some(value) = self.run_statement(*left)? {
value
} else {
return Err(VmError::ExpectedValue {
position: left_span,
});
};
let right_span = right.position;
if let Some(map) = left_value.as_map() {
if let Statement::Identifier(identifier) = right.inner {
let value = map.get(&identifier).cloned();
return Ok(value);
}
if let Some(value) = self.run_statement(*right)? {
if let Some(string) = value.as_string() {
let identifier = Identifier::new(string);
let value = map.get(&identifier).cloned();
return Ok(value);
}
}
return Err(VmError::ExpectedIdentifierOrString {
position: right_span,
});
} else {
return Err(VmError::ExpectedMap {
position: left_span,
});
}
}
if let BinaryOperator::ListIndex = operator.inner {
let list_position = left.position;
let list_value = if let Some(value) = self.run_statement(*left)? {
value
} else {
return Err(VmError::ExpectedValue {
position: list_position,
});
};
let list = if let Some(list) = list_value.as_list() {
list
} else {
return Err(VmError::ExpectedList {
position: list_position,
});
};
let index_position = right.position;
let index_value = if let Some(value) = self.run_statement(*right)? {
value
} else {
return Err(VmError::ExpectedValue {
position: index_position,
});
};
if let Some(index) = index_value.as_integer() {
return if let Some(value) = list.get(index as usize) {
Ok(Some(value.clone()))
} else {
Ok(None)
};
}
if let Some(range) = index_value.as_range() {
let range = range.start as usize..range.end as usize;
return if let Some(list) = list.get(range) {
Ok(Some(Value::list(list.to_vec())))
} else {
Ok(None)
};
}
return Err(VmError::ExpectedIntegerOrRange {
position: index_position,
});
}
let left_position = left.position;
let left_value = if let Some(value) = self.run_statement(*left)? {
value
} else {
return Err(VmError::ExpectedValue {
position: left_position,
});
};
let right_value = if let Some(value) = self.run_statement(*right)? {
value
} else {
return Err(VmError::ExpectedValue {
position: right_position,
});
};
match operator.inner {
BinaryOperator::Add => left_value.add(&right_value),
BinaryOperator::And => left_value.and(&right_value),
BinaryOperator::Divide => left_value.divide(&right_value),
BinaryOperator::Equal => Ok(Value::boolean(left_value == right_value)),
BinaryOperator::Greater => left_value.greater_than(&right_value),
BinaryOperator::GreaterOrEqual => {
left_value.greater_than_or_equal(&right_value)
}
BinaryOperator::Less => left_value.less_than(&right_value),
BinaryOperator::LessOrEqual => left_value.less_than_or_equal(&right_value),
BinaryOperator::Modulo => left_value.modulo(&right_value),
BinaryOperator::Multiply => left_value.multiply(&right_value),
BinaryOperator::Or => left_value.or(&right_value),
BinaryOperator::Subtract => left_value.subtract(&right_value),
_ => unreachable!(),
}
.map(Some)
.map_err(|value_error| VmError::ValueError {
error: value_error,
position: node.position,
})
}
Statement::Block(statements) => {
let mut previous_value = None;
for statement in statements {
previous_value = self.run_statement(statement)?;
}
Ok(previous_value)
}
Statement::BuiltInFunctionCall {
function,
type_arguments: _,
value_arguments: value_nodes,
} => {
let values = if let Some(nodes) = value_nodes {
let mut values = Vec::new();
for node in nodes {
let position = node.position;
let value = if let Some(value) = self.run_statement(node)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
values.push(value);
}
Some(values)
} else {
None
};
let function_call_return =
function
.call(None, values)
.map_err(|built_in_function_error| VmError::BuiltInFunctionError {
error: built_in_function_error,
position: node.position,
})?;
Ok(function_call_return)
}
Statement::Constant(value) => Ok(Some(value.clone())),
Statement::FieldsStructInstantiation { name, fields } => {
let mut values = Vec::new();
for (identifier, value_node) in fields {
let position = value_node.position;
let value = if let Some(value) = self.run_statement(value_node)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
values.push((identifier.inner, value));
}
Ok(Some(Value::r#struct(Struct::Fields {
name: name.inner,
fields: values,
})))
}
Statement::Invokation {
invokee,
type_arguments: _,
value_arguments: value_parameter_nodes,
} => {
let invokee_position = invokee.position;
let invokee_type = invokee.inner.expected_type(&self.context);
if let Some(Type::Struct(StructType::Tuple { name, .. })) = invokee_type {
let mut fields = Vec::new();
if let Some(value_parameter_nodes) = value_parameter_nodes {
for statement in value_parameter_nodes {
let position = statement.position;
let value = if let Some(value) = self.run_statement(statement)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
fields.push(value);
}
}
let struct_value = Value::r#struct(Struct::Tuple {
name: name.clone(),
fields,
});
return Ok(Some(struct_value));
}
let function_value = if let Some(value) = self.run_statement(*invokee)? {
value
} else {
return Err(VmError::ExpectedValue {
position: invokee_position,
});
};
let function = if let Some(function) = function_value.as_function() {
function
} else {
return Err(VmError::ExpectedFunction {
actual: function_value,
position: invokee_position,
});
};
let value_parameters = if let Some(value_nodes) = value_parameter_nodes {
let mut value_parameters = Vec::new();
for node in value_nodes {
let position = node.position;
let value = if let Some(value) = self.run_statement(node)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
value_parameters.push(value);
}
Some(value_parameters)
} else {
None
};
Ok(function
.clone()
.call(None, value_parameters, &self.context)?)
}
Statement::Identifier(identifier) => {
let value_option = self.context.get_value(&identifier);
if let Some(value) = value_option {
return Ok(Some(value.clone()));
}
let type_option = self.context.get_type(&identifier);
println!("{type_option:?}");
if let Some(Type::Struct(StructType::Unit { name })) = type_option {
return Ok(Some(Value::r#struct(Struct::Unit { name })));
}
Err(VmError::UndefinedVariable {
identifier: Node::new(identifier, node.position),
})
}
Statement::If { condition, body } => {
let condition_position = condition.position;
let condition_value = if let Some(value) = self.run_statement(*condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
let condition = if let Some(condition) = condition_value.as_boolean() {
condition
} else {
return Err(VmError::ExpectedBoolean {
position: condition_position,
});
};
if condition {
self.run_statement(*body)?;
}
Ok(None)
}
Statement::IfElse {
condition,
if_body,
else_body,
} => {
let condition_position = condition.position;
let condition_value = if let Some(value) = self.run_statement(*condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
if let Some(condition) = condition_value.as_boolean() {
if condition {
self.run_statement(*if_body)
} else {
self.run_statement(*else_body)
}
} else {
Err(VmError::ExpectedBoolean {
position: condition_position,
})
}
}
Statement::IfElseIf {
condition,
if_body,
else_ifs,
} => {
let condition_position = condition.position;
let condition_value = if let Some(value) = self.run_statement(*condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
if let Some(condition) = condition_value.as_boolean() {
if condition {
self.run_statement(*if_body)
} else {
for (condition, body) in else_ifs {
let condition_position = condition.position;
let condition_value =
if let Some(value) = self.run_statement(condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
let condition = if let Some(condition) = condition_value.as_boolean() {
condition
} else {
return Err(VmError::ExpectedBoolean {
position: condition_position,
});
};
if condition {
self.run_statement(body)?;
}
}
Ok(None)
}
} else {
Err(VmError::ExpectedBoolean {
position: condition_position,
})
}
}
Statement::IfElseIfElse {
condition,
if_body,
else_ifs,
else_body,
} => {
let condition_position = condition.position;
let condition_value = if let Some(value) = self.run_statement(*condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
if let Some(condition) = condition_value.as_boolean() {
if condition {
self.run_statement(*if_body)
} else {
for (condition, body) in else_ifs {
let condition_position = condition.position;
let condition_value =
if let Some(value) = self.run_statement(condition)? {
value
} else {
return Err(VmError::ExpectedValue {
position: condition_position,
});
};
let condition = if let Some(condition) = condition_value.as_boolean() {
condition
} else {
return Err(VmError::ExpectedBoolean {
position: condition_position,
});
};
if condition {
return self.run_statement(body);
}
}
self.run_statement(*else_body)
}
} else {
Err(VmError::ExpectedBoolean {
position: condition_position,
})
}
}
Statement::List(nodes) => {
let values = nodes
.into_iter()
.map(|node| {
let span = node.position;
if let Some(value) = self.run_statement(node)? {
Ok(value)
} else {
Err(VmError::ExpectedValue { position: span })
}
})
.collect::, VmError>>()?;
Ok(Some(Value::list(values)))
}
Statement::Map(nodes) => {
let mut values = BTreeMap::new();
for (identifier, value_node) in nodes {
let position = value_node.position;
let value = if let Some(value) = self.run_statement(value_node)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
values.insert(identifier.inner, value);
}
Ok(Some(Value::map(values)))
}
Statement::Nil(node) => {
let _return = self.run_statement(*node)?;
Ok(None)
}
Statement::StructDefinition(_) => Ok(None),
Statement::UnaryOperation { operator, operand } => {
let position = operand.position;
let value = if let Some(value) = self.run_statement(*operand)? {
value
} else {
return Err(VmError::ExpectedValue { position });
};
match operator.inner {
UnaryOperator::Negate => {
if let Some(value) = value.as_integer() {
Ok(Some(Value::integer(-value)))
} else if let Some(value) = value.as_float() {
Ok(Some(Value::float(-value)))
} else {
Err(VmError::ExpectedNumber { position })
}
}
UnaryOperator::Not => {
if let Some(value) = value.as_boolean() {
Ok(Some(Value::boolean(!value)))
} else {
Err(VmError::ExpectedBoolean { position })
}
}
}
}
Statement::While { condition, body } => {
let mut return_value = None;
let condition_position = condition.position;
while let Some(condition_value) = self.run_statement(*condition.clone())? {
if let ValueInner::Boolean(condition_value) = condition_value.inner().as_ref() {
if !condition_value {
break;
}
} else {
return Err(VmError::ExpectedBoolean {
position: condition_position,
});
}
return_value = self.run_statement(*body.clone())?;
if return_value.is_some() {
break;
}
}
Ok(return_value)
}
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum VmError {
ParseError(ParseError),
ValueError {
error: ValueError,
position: Span,
},
// Anaylsis Failures
// These should be prevented by running the analyzer before the VM
BuiltInFunctionError {
error: BuiltInFunctionError,
position: Span,
},
ExpectedBoolean {
position: Span,
},
ExpectedIdentifier {
position: Span,
},
ExpectedIntegerOrRange {
position: Span,
},
ExpectedIdentifierOrString {
position: Span,
},
ExpectedInteger {
position: Span,
},
ExpectedNumber {
position: Span,
},
ExpectedMap {
position: Span,
},
ExpectedFunction {
actual: Value,
position: Span,
},
ExpectedList {
position: Span,
},
ExpectedValue {
position: Span,
},
UndefinedVariable {
identifier: Node,
},
UndefinedProperty {
value: Value,
value_position: Span,
property: Identifier,
property_position: Span,
},
}
impl VmError {
pub fn position(&self) -> Span {
match self {
Self::ParseError(parse_error) => parse_error.position(),
Self::ValueError { position, .. } => *position,
Self::BuiltInFunctionError { position, .. } => *position,
Self::ExpectedBoolean { position } => *position,
Self::ExpectedIdentifier { position } => *position,
Self::ExpectedIdentifierOrString { position } => *position,
Self::ExpectedIntegerOrRange { position } => *position,
Self::ExpectedInteger { position } => *position,
Self::ExpectedFunction { position, .. } => *position,
Self::ExpectedList { position } => *position,
Self::ExpectedMap { position } => *position,
Self::ExpectedNumber { position } => *position,
Self::ExpectedValue { position } => *position,
Self::UndefinedVariable { identifier } => identifier.position,
Self::UndefinedProperty {
property_position, ..
} => *property_position,
}
}
}
impl From for VmError {
fn from(error: ParseError) -> Self {
Self::ParseError(error)
}
}
impl Display for VmError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::ParseError(parse_error) => write!(f, "{}", parse_error),
Self::ValueError { error, .. } => write!(f, "{}", error),
Self::BuiltInFunctionError { error, .. } => {
write!(f, "{}", error)
}
Self::ExpectedBoolean { position } => {
write!(f, "Expected a boolean at position: {:?}", position)
}
Self::ExpectedFunction { actual, position } => {
write!(
f,
"Expected a function, but got: {} at position: {:?}",
actual, position
)
}
Self::ExpectedIdentifier { position } => {
write!(f, "Expected an identifier at position: {:?}", position)
}
Self::ExpectedIdentifierOrString { position } => {
write!(
f,
"Expected an identifier or string at position: {:?}",
position
)
}
Self::ExpectedIntegerOrRange { position } => {
write!(
f,
"Expected an identifier, integer, or range at position: {:?}",
position
)
}
Self::ExpectedInteger { position } => {
write!(f, "Expected an integer at position: {:?}", position)
}
Self::ExpectedList { position } => {
write!(f, "Expected a list at position: {:?}", position)
}
Self::ExpectedMap { position } => {
write!(f, "Expected a map at position: {:?}", position)
}
Self::ExpectedNumber { position } => {
write!(
f,
"Expected an integer or float at position: {:?}",
position
)
}
Self::ExpectedValue { position } => {
write!(f, "Expected a value at position: {:?}", position)
}
Self::UndefinedVariable { identifier } => {
write!(f, "Undefined identifier: {}", identifier)
}
Self::UndefinedProperty {
value, property, ..
} => {
write!(f, "Value {} does not have the property {}", value, property)
}
}
}
}
#[cfg(test)]
mod tests {
use crate::Struct;
use super::*;
#[test]
fn define_and_instantiate_fields_struct() {
let input = "struct Foo { bar: int, baz: float } Foo { bar = 42, baz = 4.0 }";
assert_eq!(
run(input),
Ok(Some(Value::r#struct(Struct::Fields {
name: Identifier::new("Foo"),
fields: vec![
(Identifier::new("bar"), Value::integer(42)),
(Identifier::new("baz"), Value::float(4.0))
]
})))
);
}
#[test]
fn assign_tuple_struct_variable() {
let input = "
struct Foo(int)
x = Foo(42)
x
";
assert_eq!(
run(input),
Ok(Some(Value::r#struct(Struct::Tuple {
name: Identifier::new("Foo"),
fields: vec![Value::integer(42)]
})))
)
}
#[test]
fn define_and_instantiate_tuple_struct() {
let input = "struct Foo(int) Foo(42)";
assert_eq!(
run(input),
Ok(Some(Value::r#struct(Struct::Tuple {
name: Identifier::new("Foo"),
fields: vec![Value::integer(42)]
})))
);
}
#[test]
fn assign_unit_struct_variable() {
let input = "
struct Foo
x = Foo
x
";
assert_eq!(
run(input),
Ok(Some(Value::r#struct(Struct::Unit {
name: Identifier::new("Foo")
})))
)
}
#[test]
fn define_and_instantiate_unit_struct() {
let input = "struct Foo Foo";
assert_eq!(
run(input),
Ok(Some(Value::r#struct(Struct::Unit {
name: Identifier::new("Foo")
})))
);
}
#[test]
fn list_index_nested() {
let input = "[[1, 2], [42, 4], [5, 6]][1][0]";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn map_property() {
let input = "{ x = 42 }.x";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn map_property_nested() {
let input = "{ x = { y = 42 } }.x.y";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn map_property_access_expression() {
let input = "{ foobar = 42 }.('foo' + 'bar')";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn list_index_range() {
let input = "[1, 2, 3, 4, 5][1..3]";
assert_eq!(
run(input),
Ok(Some(Value::list(vec![
Value::integer(2),
Value::integer(3)
])))
);
}
#[test]
fn range() {
let input = "1..5";
assert_eq!(run(input), Ok(Some(Value::range(1..5))));
}
#[test]
fn negate_expression() {
let input = "x = -42; -x";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn not_expression() {
let input = "!(1 == 2 || 3 == 4 || 5 == 6)";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn list_index() {
let input = "[1, 42, 3][1]";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn map_property_access() {
let input = "{ a = 42 }.a";
assert_eq!(run(input), Ok(Some(Value::integer(42))));
}
#[test]
fn built_in_function_dot_notation() {
let input = "42.to_string()";
assert_eq!(run(input), Ok(Some(Value::string("42"))));
}
#[test]
fn to_string() {
let input = "to_string(42)";
assert_eq!(run(input), Ok(Some(Value::string("42".to_string()))));
}
#[test]
fn r#if() {
let input = "if true { 1 }";
assert_eq!(run(input), Ok(None));
}
#[test]
fn if_else() {
let input = "if false { 1 } else { 2 }";
assert_eq!(run(input), Ok(Some(Value::integer(2))));
}
#[test]
fn if_else_if() {
let input = "if false { 1 } else if true { 2 }";
assert_eq!(run(input), Ok(None));
}
#[test]
fn if_else_if_else() {
let input = "if false { 1 } else if false { 2 } else { 3 }";
assert_eq!(run(input), Ok(Some(Value::integer(3))));
}
#[test]
fn while_loop() {
let input = "x = 0; while x < 5 { x += 1; } x";
assert_eq!(run(input), Ok(Some(Value::integer(5))));
}
#[test]
fn add_assign() {
let input = "x = 1; x += 1; x";
assert_eq!(run(input), Ok(Some(Value::integer(2))));
}
#[test]
fn or() {
let input = "true || false";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn map_equal() {
let input = "{ y = 'foo' } == { y = 'foo' }";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn integer_equal() {
let input = "42 == 42";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn modulo() {
let input = "42 % 2";
assert_eq!(run(input), Ok(Some(Value::integer(0))));
}
#[test]
fn divide() {
let input = "42 / 2";
assert_eq!(run(input), Ok(Some(Value::integer(21))));
}
#[test]
fn less_than() {
let input = "2 < 3";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn less_than_or_equal() {
let input = "42 <= 42";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn greater_than() {
let input = "2 > 3";
assert_eq!(run(input), Ok(Some(Value::boolean(false))));
}
#[test]
fn greater_than_or_equal() {
let input = "42 >= 42";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn integer_saturating_add() {
let input = "9223372036854775807 + 1";
assert_eq!(run(input), Ok(Some(Value::integer(i64::MAX))));
}
#[test]
fn integer_saturating_sub() {
let input = "-9223372036854775808 - 1";
assert_eq!(run(input), Ok(Some(Value::integer(i64::MIN))));
}
#[test]
fn multiply() {
let input = "2 * 3";
assert_eq!(run(input), Ok(Some(Value::integer(6))));
}
#[test]
fn boolean() {
let input = "true";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn is_even() {
let input = "is_even(42)";
assert_eq!(run(input), Ok(Some(Value::boolean(true))));
}
#[test]
fn is_odd() {
let input = "is_odd(42)";
assert_eq!(run(input), Ok(Some(Value::boolean(false))));
}
#[test]
fn length() {
let input = "length([1, 2, 3])";
assert_eq!(run(input), Ok(Some(Value::integer(3))));
}
#[test]
fn add() {
let input = "1 + 2";
assert_eq!(run(input), Ok(Some(Value::integer(3))));
}
#[test]
fn add_multiple() {
let input = "1 + 2 + 3";
assert_eq!(run(input), Ok(Some(Value::integer(6))));
}
}