//! Compilation tools and errors //! //! This module provides two compilation options: //! - [`compile`], which compiles the entire input and returns a chunk //! - [`Compiler`], which compiles the input a token at a time while assembling a chunk use std::{ fmt::{self, Display, Formatter}, mem::replace, num::{ParseFloatError, ParseIntError}, vec, }; use colored::Colorize; use crate::{ value::Value, AnnotatedError, Chunk, ChunkError, DustError, FunctionType, Instruction, LexError, Lexer, Local, NativeFunction, Operation, Optimizer, Scope, Span, Token, TokenKind, TokenOwned, Type, TypeConflict, }; /// Compiles the input and returns a chunk. /// /// # Example /// /// ``` /// # use dust_lang::compile; /// let source = "40 + 2 == 42"; /// let chunk = compile(source).unwrap(); /// /// assert_eq!(chunk.len(), 6); /// ``` pub fn compile(source: &str) -> Result<Chunk, DustError> { let lexer = Lexer::new(source); let mut compiler = Compiler::new(lexer).map_err(|error| DustError::Compile { error, source })?; compiler .parse_top_level() .map_err(|error| DustError::Compile { error, source })?; Ok(compiler.finish()) } /// Low-level tool for compiling the input a token at a time while assembling a chunk. /// /// See the [`compile`] function an example of how to create and use a Compiler. #[derive(Debug, Eq, PartialEq, PartialOrd)] pub struct Compiler<'src> { chunk: Chunk, lexer: Lexer<'src>, local_definitions: Vec<u8>, optimization_count: usize, previous_expression_type: Type, minimum_register: u8, current_token: Token<'src>, current_position: Span, previous_token: Token<'src>, previous_position: Span, block_index: u8, current_scope: Scope, } impl<'src> Compiler<'src> { pub fn new(mut lexer: Lexer<'src>) -> Result<Self, CompileError> { let (current_token, current_position) = lexer.next_token()?; let chunk = Chunk::new(None); log::info!( "Begin chunk with {} at {}", current_token.to_string().bold(), current_position.to_string() ); Ok(Compiler { chunk, lexer, local_definitions: Vec::new(), optimization_count: 0, previous_expression_type: Type::None, minimum_register: 0, current_token, current_position, previous_token: Token::Eof, previous_position: Span(0, 0), block_index: 0, current_scope: Scope::default(), }) } pub fn finish(self) -> Chunk { log::info!("End chunk with {} optimizations", self.optimization_count); self.chunk } fn is_eof(&self) -> bool { matches!(self.current_token, Token::Eof) } fn next_register(&mut self) -> u8 { self.chunk .instructions() .iter() .rev() .find_map(|(instruction, _)| { if instruction.yields_value() { let previous = instruction.a(); let next = previous.overflowing_add(1).0; Some(next) } else { None } }) .unwrap_or(self.minimum_register) } fn advance(&mut self) -> Result<(), CompileError> { if self.is_eof() { return Ok(()); } let (new_token, position) = self.lexer.next_token()?; log::info!( "Parsing {} at {}", new_token.to_string().bold(), position.to_string() ); self.previous_token = replace(&mut self.current_token, new_token); self.previous_position = replace(&mut self.current_position, position); Ok(()) } fn get_local(&self, index: u8) -> Result<&Local, CompileError> { self.chunk .get_local(index) .map_err(|error| CompileError::Chunk { error, position: self.current_position, }) } fn get_local_index(&self, identifier_text: &str) -> Result<u8, CompileError> { self.chunk .locals() .iter() .enumerate() .rev() .find_map(|(index, local)| { let constant = self .chunk .constants() .get(local.identifier_index as usize)?; let identifier = if let Value::String(identifier) = constant { identifier } else { return None; }; if identifier == identifier_text { Some(index as u8) } else { None } }) .ok_or(CompileError::UndeclaredVariable { identifier: identifier_text.to_string(), position: self.current_position, }) } fn declare_local( &mut self, identifier: &str, r#type: Type, is_mutable: bool, scope: Scope, register_index: u8, ) -> (u8, u8) { log::debug!("Declare local {identifier}"); let identifier = Value::string(identifier); let identifier_index = self.chunk.push_or_get_constant(identifier); self.chunk .locals_mut() .push(Local::new(identifier_index, r#type, is_mutable, scope)); self.local_definitions.push(register_index); (self.chunk.locals().len() as u8 - 1, identifier_index) } fn allow(&mut self, allowed: Token) -> Result<bool, CompileError> { if self.current_token == allowed { self.advance()?; Ok(true) } else { Ok(false) } } fn expect(&mut self, expected: Token) -> Result<(), CompileError> { if self.current_token == expected { self.advance() } else { Err(CompileError::ExpectedToken { expected: expected.kind(), found: self.current_token.to_owned(), position: self.current_position, }) } } fn pop_last_instruction(&mut self) -> Result<(Instruction, Span), CompileError> { self.chunk .instructions_mut() .pop() .ok_or_else(|| CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }) } fn get_last_operations<const COUNT: usize>(&self) -> Option<[Operation; COUNT]> { let mut n_operations = [Operation::Return; COUNT]; for (nth, operation) in n_operations.iter_mut().rev().zip( self.chunk .instructions() .iter() .rev() .map(|(instruction, _)| instruction.operation()), ) { *nth = operation; } Some(n_operations) } fn get_last_jumpable_mut(&mut self) -> Option<&mut Instruction> { self.chunk .instructions_mut() .iter_mut() .rev() .find_map(|(instruction, _)| { if let Operation::LoadBoolean | Operation::LoadConstant = instruction.operation() { Some(instruction) } else { None } }) } pub fn get_instruction_type(&self, instruction: &Instruction) -> Result<Type, CompileError> { use Operation::*; match instruction.operation() { Add | Divide | Modulo | Multiply | Subtract => { if instruction.b_is_constant() { self.chunk .get_constant_type(instruction.b()) .map_err(|error| CompileError::Chunk { error, position: self.current_position, }) } else { self.get_register_type(instruction.b()) } } LoadBoolean | Not => Ok(Type::Boolean), Negate => { if instruction.b_is_constant() { self.chunk .get_constant_type(instruction.b()) .map_err(|error| CompileError::Chunk { error, position: self.current_position, }) } else { self.get_register_type(instruction.b()) } } LoadConstant => self .chunk .get_constant_type(instruction.b()) .map_err(|error| CompileError::Chunk { error, position: self.current_position, }), LoadList => self.get_register_type(instruction.a()), GetLocal => self .chunk .get_local_type(instruction.b()) .cloned() .map_err(|error| CompileError::Chunk { error, position: self.current_position, }), CallNative => { let native_function = NativeFunction::from(instruction.b()); Ok(*native_function.r#type().return_type) } _ => Ok(Type::None), } } pub fn get_register_type(&self, register_index: u8) -> Result<Type, CompileError> { for (index, (instruction, _)) in self.chunk.instructions().iter().enumerate() { if instruction.a() == register_index { if let Operation::LoadList = instruction.operation() { let mut length = (instruction.c() - instruction.b() + 1) as usize; let mut item_type = Type::Any; let distance_to_end = self.chunk.len() - index; for (instruction, _) in self .chunk .instructions() .iter() .rev() .skip(distance_to_end) .take(length) { if let Operation::Close = instruction.operation() { length -= (instruction.c() - instruction.b()) as usize; } else if let Type::Any = item_type { item_type = self.get_instruction_type(instruction)?; } } return Ok(Type::List { item_type: Box::new(item_type), length, }); } if let Operation::LoadSelf = instruction.operation() { return Ok(Type::SelfChunk); } if instruction.yields_value() { return self.get_instruction_type(instruction); } } } Err(CompileError::CannotResolveRegisterType { register_index: register_index as usize, position: self.current_position, }) } fn emit_instruction(&mut self, instruction: Instruction, position: Span) { log::debug!( "Emitting {} at {}", instruction.operation().to_string().bold(), position.to_string() ); self.chunk.instructions_mut().push((instruction, position)); } fn emit_constant(&mut self, constant: Value, position: Span) -> Result<(), CompileError> { let constant_index = self.chunk.push_or_get_constant(constant); let register = self.next_register(); self.emit_instruction( Instruction::load_constant(register, constant_index, false), position, ); Ok(()) } fn parse_boolean(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::Boolean(text) = self.current_token { self.advance()?; let boolean = text.parse::<bool>().unwrap(); let register = self.next_register(); self.emit_instruction( Instruction::load_boolean(register, boolean, false), position, ); self.previous_expression_type = Type::Boolean; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::Boolean, found: self.current_token.to_owned(), position, }) } } fn parse_byte(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::Byte(text) = self.current_token { self.advance()?; let byte = u8::from_str_radix(&text[2..], 16) .map_err(|error| CompileError::ParseIntError { error, position })?; let value = Value::byte(byte); self.emit_constant(value, position)?; self.previous_expression_type = Type::Byte; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::Byte, found: self.current_token.to_owned(), position, }) } } fn parse_character(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::Character(character) = self.current_token { self.advance()?; let value = Value::character(character); self.emit_constant(value, position)?; self.previous_expression_type = Type::Character; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::Character, found: self.current_token.to_owned(), position, }) } } fn parse_float(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::Float(text) = self.current_token { self.advance()?; let float = text .parse::<f64>() .map_err(|error| CompileError::ParseFloatError { error, position: self.previous_position, })?; let value = Value::float(float); self.emit_constant(value, position)?; self.previous_expression_type = Type::Float; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::Float, found: self.current_token.to_owned(), position, }) } } fn parse_integer(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::Integer(text) = self.current_token { self.advance()?; let integer = text .parse::<i64>() .map_err(|error| CompileError::ParseIntError { error, position: self.previous_position, })?; let value = Value::integer(integer); self.emit_constant(value, position)?; self.previous_expression_type = Type::Integer; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::Integer, found: self.current_token.to_owned(), position, }) } } fn parse_string(&mut self) -> Result<(), CompileError> { let position = self.current_position; if let Token::String(text) = self.current_token { self.advance()?; let value = Value::string(text); self.emit_constant(value, position)?; self.previous_expression_type = Type::String { length: Some(text.len()), }; Ok(()) } else { Err(CompileError::ExpectedToken { expected: TokenKind::String, found: self.current_token.to_owned(), position, }) } } fn parse_grouped(&mut self) -> Result<(), CompileError> { self.allow(Token::LeftParenthesis)?; self.parse_expression()?; self.expect(Token::RightParenthesis)?; Ok(()) } fn parse_unary(&mut self) -> Result<(), CompileError> { let operator = self.current_token; let operator_position = self.current_position; self.advance()?; self.parse_expression()?; let (previous_instruction, previous_position) = self.pop_last_instruction()?; let (push_back, is_constant, argument) = { match previous_instruction.operation() { Operation::GetLocal => (false, false, previous_instruction.a()), Operation::LoadConstant => (false, true, previous_instruction.a()), Operation::LoadBoolean => (true, false, previous_instruction.a()), Operation::Close => { return Err(CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => (true, false, previous_instruction.a()), } }; if push_back { self.emit_instruction(previous_instruction, previous_position); } let register = self.next_register(); let mut instruction = match operator.kind() { TokenKind::Bang => Instruction::not(register, argument), TokenKind::Minus => Instruction::negate(register, argument), _ => { return Err(CompileError::ExpectedTokenMultiple { expected: &[TokenKind::Bang, TokenKind::Minus], found: operator.to_owned(), position: operator_position, }) } }; if is_constant { instruction.set_b_is_constant(); } self.emit_instruction(instruction, operator_position); if let TokenKind::Bang = operator.kind() { self.previous_expression_type = Type::Boolean; } Ok(()) } fn handle_binary_argument( &mut self, instruction: &Instruction, ) -> Result<(bool, bool, bool, u8), CompileError> { let mut push_back = false; let mut is_constant = false; let mut is_mutable_local = false; let argument = match instruction.operation() { Operation::GetLocal => { let local_index = instruction.b(); let local = self.get_local(local_index)?; is_mutable_local = local.is_mutable; *self .local_definitions .get(local_index as usize) .ok_or_else(|| { let identifier = self .chunk .constants() .get(local.identifier_index as usize) .unwrap() .to_string(); CompileError::UndeclaredVariable { identifier, position: self.current_position, } })? } Operation::LoadConstant => { is_constant = true; instruction.b() } Operation::Close => { return Err(CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => { push_back = true; if instruction.yields_value() { instruction.a() } else { self.next_register() } } }; Ok((push_back, is_constant, is_mutable_local, argument)) } fn parse_math_binary(&mut self) -> Result<(), CompileError> { let (left_instruction, left_position) = self.chunk.instructions_mut().pop().ok_or_else(|| { CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, } })?; let (push_back_left, left_is_constant, left_is_mutable_local, left) = self.handle_binary_argument(&left_instruction)?; if push_back_left { self.emit_instruction(left_instruction, left_position); } let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); if let Token::PlusEqual | Token::MinusEqual | Token::StarEqual | Token::SlashEqual = operator { if !left_is_mutable_local { return Err(CompileError::ExpectedMutableVariable { found: self.previous_token.to_owned(), position: left_position, }); } } self.advance()?; self.parse_sub_expression(&rule.precedence)?; let (right_instruction, right_position) = self.pop_last_instruction()?; let (push_back_right, right_is_constant, _, right) = self.handle_binary_argument(&right_instruction)?; if push_back_right { self.emit_instruction(right_instruction, right_position); } let register = if left_is_mutable_local { left } else { self.next_register() }; let mut new_instruction = match operator { Token::Plus => Instruction::add(register, left, right), Token::PlusEqual => Instruction::add(register, left, right), Token::Minus => Instruction::subtract(register, left, right), Token::MinusEqual => Instruction::subtract(register, left, right), Token::Star => Instruction::multiply(register, left, right), Token::StarEqual => Instruction::multiply(register, left, right), Token::Slash => Instruction::divide(register, left, right), Token::SlashEqual => Instruction::divide(register, left, right), Token::Percent => Instruction::modulo(register, left, right), Token::PercentEqual => Instruction::modulo(register, left, right), _ => { return Err(CompileError::ExpectedTokenMultiple { expected: &[ TokenKind::Plus, TokenKind::PlusEqual, TokenKind::Minus, TokenKind::MinusEqual, TokenKind::Star, TokenKind::StarEqual, TokenKind::Slash, TokenKind::SlashEqual, TokenKind::Percent, TokenKind::PercentEqual, ], found: operator.to_owned(), position: operator_position, }) } }; if left_is_constant { new_instruction.set_b_is_constant(); } if right_is_constant { new_instruction.set_c_is_constant(); } self.emit_instruction(new_instruction, operator_position); if let Token::PlusEqual | Token::MinusEqual | Token::StarEqual | Token::SlashEqual | Token::PercentEqual = operator { self.previous_expression_type = Type::None; } else { self.previous_expression_type = self.get_instruction_type(&left_instruction)?; } Ok(()) } fn parse_comparison_binary(&mut self) -> Result<(), CompileError> { if let Some([Operation::Equal | Operation::Less | Operation::LessEqual, _, _, _]) = self.get_last_operations() { return Err(CompileError::CannotChainComparison { position: self.current_position, }); } let (left_instruction, left_position) = self.chunk.instructions_mut().pop().ok_or_else(|| { CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, } })?; let (push_back_left, left_is_constant, _, left) = self.handle_binary_argument(&left_instruction)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); self.advance()?; self.parse_sub_expression(&rule.precedence)?; let (right_instruction, right_position) = self.chunk.instructions_mut().pop().ok_or_else(|| { CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, } })?; let (push_back_right, right_is_constant, _, right) = self.handle_binary_argument(&right_instruction)?; let mut instruction = match operator { Token::DoubleEqual => Instruction::equal(true, left, right), Token::BangEqual => Instruction::equal(false, left, right), Token::Less => Instruction::less(true, left, right), Token::LessEqual => Instruction::less_equal(true, left, right), Token::Greater => Instruction::less_equal(false, left, right), Token::GreaterEqual => Instruction::less(false, left, right), _ => { return Err(CompileError::ExpectedTokenMultiple { expected: &[ TokenKind::DoubleEqual, TokenKind::BangEqual, TokenKind::Less, TokenKind::LessEqual, TokenKind::Greater, TokenKind::GreaterEqual, ], found: operator.to_owned(), position: operator_position, }) } }; if left_is_constant { instruction.set_b_is_constant(); } if right_is_constant { instruction.set_c_is_constant(); } if push_back_left { self.emit_instruction(left_instruction, left_position); } if push_back_right { self.emit_instruction(right_instruction, right_position); } let register = self.next_register(); self.emit_instruction(instruction, operator_position); self.emit_instruction(Instruction::jump(1, true), operator_position); self.emit_instruction( Instruction::load_boolean(register, true, true), operator_position, ); self.emit_instruction( Instruction::load_boolean(register, false, false), operator_position, ); self.previous_expression_type = Type::Boolean; Ok(()) } fn parse_logical_binary(&mut self) -> Result<(), CompileError> { let start_length = self.chunk.len(); let (left_instruction, left_position) = self.pop_last_instruction()?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator); let test_instruction = match operator { Token::DoubleAmpersand => Instruction::test(left_instruction.a(), false), Token::DoublePipe => Instruction::test(left_instruction.a(), true), _ => { return Err(CompileError::ExpectedTokenMultiple { expected: &[TokenKind::DoubleAmpersand, TokenKind::DoublePipe], found: operator.to_owned(), position: operator_position, }) } }; self.advance()?; self.emit_instruction(left_instruction, left_position); self.emit_instruction(test_instruction, operator_position); let jump_distance = (self.chunk.len() - start_length) as u8; self.emit_instruction(Instruction::jump(jump_distance, true), operator_position); self.parse_sub_expression(&rule.precedence)?; self.previous_expression_type = Type::Boolean; Ok(()) } fn parse_variable(&mut self) -> Result<(), CompileError> { let start_position = self.current_position; let identifier = if let Token::Identifier(text) = self.current_token { self.advance()?; text } else { return Err(CompileError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position: start_position, }); }; let local_index = if let Ok(local_index) = self.get_local_index(identifier) { local_index } else if let Some(native_function) = NativeFunction::from_str(identifier) { return self.parse_native_call(native_function); } else if Some(identifier) == self.chunk.name().map(|string| string.as_str()) { let register = self.next_register(); self.emit_instruction(Instruction::load_self(register), start_position); self.declare_local( identifier, Type::SelfChunk, false, self.current_scope, register, ); self.previous_expression_type = Type::SelfChunk; return Ok(()); } else { return Err(CompileError::UndeclaredVariable { identifier: identifier.to_string(), position: start_position, }); }; let (is_mutable, local_scope) = { let local = self.get_local(local_index)?; (local.is_mutable, local.scope) }; if !self.current_scope.contains(&local_scope) { return Err(CompileError::VariableOutOfScope { identifier: self.chunk.get_identifier(local_index).unwrap(), position: start_position, variable_scope: local_scope, access_scope: self.current_scope, }); } if self.allow(Token::Equal)? { if !is_mutable { return Err(CompileError::CannotMutateImmutableVariable { identifier: self.chunk.get_identifier(local_index).unwrap(), position: start_position, }); } self.parse_expression()?; let register = self.next_register() - 1; self.emit_instruction( Instruction::set_local(register, local_index), start_position, ); self.previous_expression_type = Type::None; let mut optimizer = Optimizer::new(self.chunk.instructions_mut()); let optimized = Optimizer::optimize_set_local(&mut optimizer); if optimized { self.optimization_count += 1; } return Ok(()); } let register = self.next_register(); self.emit_instruction( Instruction::get_local(register, local_index), self.previous_position, ); let local = self.get_local(local_index)?; self.previous_expression_type = local.r#type.clone(); Ok(()) } fn parse_type_from(&mut self, token: Token, position: Span) -> Result<Type, CompileError> { match token { Token::Bool => Ok(Type::Boolean), Token::FloatKeyword => Ok(Type::Float), Token::Int => Ok(Type::Integer), Token::Str => Ok(Type::String { length: None }), _ => Err(CompileError::ExpectedTokenMultiple { expected: &[ TokenKind::Bool, TokenKind::FloatKeyword, TokenKind::Int, TokenKind::Str, ], found: self.current_token.to_owned(), position, }), } } fn parse_block(&mut self) -> Result<(), CompileError> { self.advance()?; self.block_index += 1; self.current_scope.begin(self.block_index); while !self.allow(Token::RightBrace)? && !self.is_eof() { self.parse(Precedence::None)?; } self.current_scope.end(); Ok(()) } fn parse_list(&mut self) -> Result<(), CompileError> { let start = self.current_position.0; self.advance()?; let start_register = self.next_register(); let mut item_type = Type::Any; while !self.allow(Token::RightBracket)? && !self.is_eof() { let expected_register = self.next_register(); self.parse_expression()?; if expected_register > start_register { if let Err(conflict) = item_type.check(&self.previous_expression_type) { return Err(CompileError::ListItemTypeConflict { conflict, position: self.previous_position, }); } } item_type = self.previous_expression_type.clone(); let actual_register = self.next_register() - 1; if expected_register < actual_register { self.emit_instruction( Instruction::close(expected_register, actual_register), self.current_position, ); } self.allow(Token::Comma)?; } let to_register = self.next_register(); let end = self.current_position.1; self.emit_instruction( Instruction::load_list(to_register, start_register), Span(start, end), ); self.previous_expression_type = Type::List { item_type: Box::new(item_type), length: (to_register - start_register) as usize, }; Ok(()) } fn parse_if(&mut self) -> Result<(), CompileError> { self.advance()?; self.parse_expression()?; if matches!( self.get_last_operations(), Some([ Operation::Equal | Operation::Less | Operation::LessEqual, Operation::Jump, Operation::LoadBoolean, Operation::LoadBoolean, ]) ) { self.chunk.instructions_mut().pop(); self.chunk.instructions_mut().pop(); self.chunk.instructions_mut().pop(); } let if_block_start = self.chunk.len(); let if_block_start_position = self.current_position; if let Token::LeftBrace = self.current_token { self.parse_block()?; } else { return Err(CompileError::ExpectedToken { expected: TokenKind::LeftBrace, found: self.current_token.to_owned(), position: self.current_position, }); } let if_block_end = self.chunk.len(); let mut if_block_distance = (if_block_end - if_block_start) as u8; let if_block_type = self.previous_expression_type.clone(); let if_last_register = self.next_register().saturating_sub(1); let has_else_statement = if let Token::Else = self.current_token { self.advance()?; if let Token::LeftBrace = self.current_token { self.parse_block()?; } else { return Err(CompileError::ExpectedTokenMultiple { expected: &[TokenKind::If, TokenKind::LeftBrace], found: self.current_token.to_owned(), position: self.current_position, }); } true } else if self.previous_expression_type != Type::None { return Err(CompileError::IfMissingElse { position: Span(if_block_start_position.0, self.current_position.1), }); } else { false }; let else_block_end = self.chunk.len(); let else_block_distance = (else_block_end - if_block_end) as u8; if let Err(conflict) = if_block_type.check(&self.previous_expression_type) { return Err(CompileError::IfElseBranchMismatch { conflict, position: Span(if_block_start_position.0, self.current_position.1), }); } match else_block_distance { 0 => {} 1 if !has_else_statement => { if let Some(skippable) = self.get_last_jumpable_mut() { skippable.set_c_to_boolean(true); } else { if_block_distance += 1; self.chunk.instructions_mut().insert( if_block_end, ( Instruction::jump(else_block_distance, true), self.current_position, ), ); } } 1 => {} 2.. => { if_block_distance += 1; self.chunk.instructions_mut().insert( if_block_end, ( Instruction::jump(else_block_distance, true), self.current_position, ), ); } } self.chunk.instructions_mut().insert( if_block_start, ( Instruction::jump(if_block_distance, true), if_block_start_position, ), ); if self.chunk.len() >= 4 { let mut optimizer = Optimizer::new(self.chunk.instructions_mut()); let optimized = optimizer.optimize_comparison(); if optimized { self.optimization_count += 1 } } let else_last_register = self.next_register().saturating_sub(1); if if_last_register < else_last_register { self.emit_instruction( Instruction::r#move(else_last_register, if_last_register), self.current_position, ); } Ok(()) } fn parse_while(&mut self) -> Result<(), CompileError> { self.advance()?; let expression_start = self.chunk.len() as u8; self.parse_expression()?; if matches!( self.get_last_operations(), Some([ Operation::Equal | Operation::Less | Operation::LessEqual, Operation::Jump, Operation::LoadBoolean, Operation::LoadBoolean, ],) ) { self.chunk.instructions_mut().pop(); self.chunk.instructions_mut().pop(); self.chunk.instructions_mut().pop(); } let block_start = self.chunk.len(); self.parse_block()?; let block_end = self.chunk.len() as u8; self.chunk.instructions_mut().insert( block_start, ( Instruction::jump(block_end - block_start as u8 + 1, true), self.current_position, ), ); let jump_back_distance = block_end - expression_start + 1; let jump_back = Instruction::jump(jump_back_distance, false); self.emit_instruction(jump_back, self.current_position); self.previous_expression_type = Type::None; Ok(()) } fn parse_native_call(&mut self, function: NativeFunction) -> Result<(), CompileError> { let start = self.previous_position.0; let start_register = self.next_register(); self.expect(Token::LeftParenthesis)?; while !self.allow(Token::RightParenthesis)? { let expected_register = self.next_register(); self.parse_expression()?; let actual_register = self.next_register() - 1; if expected_register < actual_register { self.emit_instruction( Instruction::close(expected_register, actual_register), self.current_position, ); } self.allow(Token::Comma)?; } let end = self.previous_position.1; let to_register = self.next_register(); let argument_count = to_register - start_register; self.previous_expression_type = Type::Function(function.r#type()); self.emit_instruction( Instruction::call_native(to_register, function, argument_count), Span(start, end), ); Ok(()) } fn parse_top_level(&mut self) -> Result<(), CompileError> { loop { self.parse(Precedence::None)?; if self.is_eof() || self.allow(Token::RightBrace)? { self.parse_implicit_return()?; break; } } Ok(()) } fn parse_expression(&mut self) -> Result<(), CompileError> { self.parse(Precedence::None)?; if self.previous_expression_type == Type::None || self.chunk.is_empty() { return Err(CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.current_position, }); } Ok(()) } fn parse_sub_expression(&mut self, precedence: &Precedence) -> Result<(), CompileError> { self.parse(precedence.increment()) } fn parse_return_statement(&mut self) -> Result<(), CompileError> { let start = self.current_position.0; self.advance()?; let has_return_value = if matches!(self.current_token, Token::Semicolon | Token::RightBrace) { false } else { self.parse_expression()?; true }; let end = self.current_position.1; self.emit_instruction(Instruction::r#return(has_return_value), Span(start, end)); self.previous_expression_type = Type::None; Ok(()) } fn parse_implicit_return(&mut self) -> Result<(), CompileError> { if self.allow(Token::Semicolon)? { self.emit_instruction(Instruction::r#return(false), self.current_position); } else { self.emit_instruction( Instruction::r#return(self.previous_expression_type != Type::None), self.current_position, ); } Ok(()) } fn parse_let_statement(&mut self) -> Result<(), CompileError> { self.advance()?; let is_mutable = self.allow(Token::Mut)?; let position = self.current_position; let identifier = if let Token::Identifier(text) = self.current_token { self.advance()?; text } else { return Err(CompileError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position, }); }; let explicit_type = if self.allow(Token::Colon)? { self.advance()?; let r#type = self.parse_type_from(self.current_token, self.current_position)?; Some(r#type) } else { None }; self.expect(Token::Equal)?; self.parse_expression()?; let register = self.next_register() - 1; let r#type = if let Some(r#type) = explicit_type { r#type } else { self.get_register_type(register)? }; let (local_index, _) = self.declare_local(identifier, r#type, is_mutable, self.current_scope, register); self.emit_instruction( Instruction::define_local(register, local_index, is_mutable), position, ); self.previous_expression_type = Type::None; Ok(()) } fn parse_function(&mut self) -> Result<(), CompileError> { let function_start = self.current_position.0; let mut function_compiler = Compiler::new(self.lexer)?; let identifier = if let Token::Identifier(text) = function_compiler.current_token { let position = function_compiler.current_position; function_compiler.advance()?; function_compiler.chunk.set_name(text.to_string()); Some((text, position)) } else { None }; function_compiler.expect(Token::LeftParenthesis)?; let mut value_parameters: Option<Vec<(u8, Type)>> = None; while function_compiler.current_token != Token::RightParenthesis { let is_mutable = function_compiler.allow(Token::Mut)?; let parameter = if let Token::Identifier(text) = function_compiler.current_token { function_compiler.advance()?; text } else { return Err(CompileError::ExpectedToken { expected: TokenKind::Identifier, found: function_compiler.current_token.to_owned(), position: function_compiler.current_position, }); }; function_compiler.expect(Token::Colon)?; let r#type = function_compiler.parse_type_from( function_compiler.current_token, function_compiler.current_position, )?; function_compiler.advance()?; let register = function_compiler.next_register(); let (_, identifier_index) = function_compiler.declare_local( parameter, r#type.clone(), is_mutable, function_compiler.current_scope, register, ); if let Some(value_parameters) = value_parameters.as_mut() { value_parameters.push((identifier_index, r#type)); } else { value_parameters = Some(vec![(identifier_index, r#type)]); }; function_compiler.minimum_register += 1; function_compiler.allow(Token::Comma)?; } function_compiler.advance()?; let return_type = if function_compiler.allow(Token::ArrowThin)? { let r#type = function_compiler.parse_type_from( function_compiler.current_token, function_compiler.current_position, )?; function_compiler.advance()?; Box::new(r#type) } else { Box::new(Type::None) }; function_compiler.expect(Token::LeftBrace)?; function_compiler.parse_top_level()?; self.previous_token = function_compiler.previous_token; self.previous_position = function_compiler.previous_position; self.current_token = function_compiler.current_token; self.current_position = function_compiler.current_position; let function_type = FunctionType { type_parameters: None, value_parameters, return_type, }; let function = Value::function(function_compiler.finish()); let constant_index = self.chunk.push_or_get_constant(function); let function_end = self.current_position.1; let register = self.next_register(); self.lexer.skip_to(function_end); if let Some((identifier, identifier_position)) = identifier { let (local_index, _) = self.declare_local( identifier, Type::Function(function_type), false, self.current_scope, register, ); self.emit_instruction( Instruction::load_constant(register, constant_index, false), Span(function_start, function_end), ); self.emit_instruction( Instruction::define_local(register, local_index, false), identifier_position, ); self.previous_expression_type = Type::None; } else { self.emit_instruction( Instruction::load_constant(register, constant_index, false), Span(function_start, function_end), ); self.previous_expression_type = Type::Function(function_type); } Ok(()) } fn parse_call(&mut self) -> Result<(), CompileError> { let (last_instruction, _) = self.chunk .instructions() .last() .ok_or_else(|| CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, })?; if !last_instruction.yields_value() { return Err(CompileError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } let function_register = last_instruction.a(); let register_type = self.get_register_type(function_register)?; let function_return_type = match register_type { Type::Function(function_type) => *function_type.return_type, Type::SelfChunk => (*self.chunk.r#type().return_type).clone(), _ => { return Err(CompileError::ExpectedFunction { found: self.previous_token.to_owned(), actual_type: register_type, position: self.previous_position, }); } }; let start = self.current_position.0; self.advance()?; while !self.allow(Token::RightParenthesis)? { let expected_register = self.next_register(); self.parse_expression()?; let actual_register = self.next_register() - 1; if expected_register < actual_register { self.emit_instruction( Instruction::close(expected_register, actual_register), self.current_position, ); } self.allow(Token::Comma)?; } let end = self.current_position.1; let to_register = self.next_register(); let argument_count = to_register - function_register - 1; self.emit_instruction( Instruction::call(to_register, function_register, argument_count), Span(start, end), ); self.previous_expression_type = function_return_type; Ok(()) } fn parse_semicolon(&mut self) -> Result<(), CompileError> { self.advance()?; self.previous_expression_type = Type::None; Ok(()) } fn expect_expression(&mut self) -> Result<(), CompileError> { Err(CompileError::ExpectedExpression { found: self.current_token.to_owned(), position: self.current_position, }) } fn parse(&mut self, precedence: Precedence) -> Result<(), CompileError> { if let Some(prefix_parser) = ParseRule::from(&self.current_token).prefix { log::debug!( "{} is prefix with precedence {precedence}", self.current_token.to_string().bold(), ); prefix_parser(self)?; } let mut infix_rule = ParseRule::from(&self.current_token); while precedence <= infix_rule.precedence { if let Some(infix_parser) = infix_rule.infix { log::debug!( "{} is infix with precedence {precedence}", self.current_token.to_string().bold(), ); if self.current_token == Token::Equal { return Err(CompileError::InvalidAssignmentTarget { found: self.current_token.to_owned(), position: self.current_position, }); } infix_parser(self)?; } else { break; } infix_rule = ParseRule::from(&self.current_token); } Ok(()) } } /// Operator precedence levels. #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] pub enum Precedence { None, Assignment, Conditional, LogicalOr, LogicalAnd, Equality, Comparison, Term, Factor, Unary, Call, Primary, } impl Precedence { fn increment(&self) -> Self { match self { Precedence::None => Precedence::Assignment, Precedence::Assignment => Precedence::Conditional, Precedence::Conditional => Precedence::LogicalOr, Precedence::LogicalOr => Precedence::LogicalAnd, Precedence::LogicalAnd => Precedence::Equality, Precedence::Equality => Precedence::Comparison, Precedence::Comparison => Precedence::Term, Precedence::Term => Precedence::Factor, Precedence::Factor => Precedence::Unary, Precedence::Unary => Precedence::Call, Precedence::Call => Precedence::Primary, Precedence::Primary => Precedence::Primary, } } } impl Display for Precedence { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{:?}", self) } } type Parser<'a> = fn(&mut Compiler<'a>) -> Result<(), CompileError>; /// Rule that defines how to parse a token. #[derive(Debug, Clone, Copy)] struct ParseRule<'a> { pub prefix: Option<Parser<'a>>, pub infix: Option<Parser<'a>>, pub precedence: Precedence, } impl From<&Token<'_>> for ParseRule<'_> { fn from(token: &Token) -> Self { match token { Token::ArrowThin => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Async => todo!(), Token::Bang => ParseRule { prefix: Some(Compiler::parse_unary), infix: None, precedence: Precedence::Unary, }, Token::BangEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Equality, }, Token::Bool => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Boolean(_) => ParseRule { prefix: Some(Compiler::parse_boolean), infix: None, precedence: Precedence::None, }, Token::Break => todo!(), Token::Byte(_) => ParseRule { prefix: Some(Compiler::parse_byte), infix: None, precedence: Precedence::None, }, Token::Character(_) => ParseRule { prefix: Some(Compiler::parse_character), infix: None, precedence: Precedence::None, }, Token::Colon => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Comma => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Dot => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::DoubleAmpersand => ParseRule { prefix: None, infix: Some(Compiler::parse_logical_binary), precedence: Precedence::LogicalAnd, }, Token::DoubleEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Equality, }, Token::DoublePipe => ParseRule { prefix: None, infix: Some(Compiler::parse_logical_binary), precedence: Precedence::LogicalOr, }, Token::DoubleDot => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Eof => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Equal => ParseRule { prefix: None, infix: None, precedence: Precedence::Assignment, }, Token::Else => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Float(_) => ParseRule { prefix: Some(Compiler::parse_float), infix: None, precedence: Precedence::None, }, Token::FloatKeyword => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Fn => ParseRule { prefix: Some(Compiler::parse_function), infix: None, precedence: Precedence::None, }, Token::Greater => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::GreaterEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::Identifier(_) => ParseRule { prefix: Some(Compiler::parse_variable), infix: None, precedence: Precedence::None, }, Token::If => ParseRule { prefix: Some(Compiler::parse_if), infix: None, precedence: Precedence::None, }, Token::Int => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::Integer(_) => ParseRule { prefix: Some(Compiler::parse_integer), infix: None, precedence: Precedence::None, }, Token::LeftBrace => ParseRule { prefix: Some(Compiler::parse_block), infix: None, precedence: Precedence::None, }, Token::LeftParenthesis => ParseRule { prefix: Some(Compiler::parse_grouped), infix: Some(Compiler::parse_call), precedence: Precedence::Call, }, Token::LeftBracket => ParseRule { prefix: Some(Compiler::parse_list), infix: None, precedence: Precedence::None, }, Token::Less => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::LessEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_comparison_binary), precedence: Precedence::Comparison, }, Token::Let => ParseRule { prefix: Some(Compiler::parse_let_statement), infix: None, precedence: Precedence::Assignment, }, Token::Loop => todo!(), Token::Map => todo!(), Token::Minus => ParseRule { prefix: Some(Compiler::parse_unary), infix: Some(Compiler::parse_math_binary), precedence: Precedence::Term, }, Token::MinusEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Assignment, }, Token::Mut => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Percent => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Factor, }, Token::PercentEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Assignment, }, Token::Plus => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Term, }, Token::PlusEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Assignment, }, Token::Return => ParseRule { prefix: Some(Compiler::parse_return_statement), infix: None, precedence: Precedence::None, }, Token::RightBrace => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::RightParenthesis => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::RightBracket => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, Token::Semicolon => ParseRule { prefix: Some(Compiler::parse_semicolon), infix: None, precedence: Precedence::None, }, Token::Slash => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Factor, }, Token::SlashEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Assignment, }, Token::Star => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Factor, }, Token::StarEqual => ParseRule { prefix: None, infix: Some(Compiler::parse_math_binary), precedence: Precedence::Assignment, }, Token::Str => ParseRule { prefix: Some(Compiler::expect_expression), infix: None, precedence: Precedence::None, }, Token::String(_) => ParseRule { prefix: Some(Compiler::parse_string), infix: None, precedence: Precedence::None, }, Token::Struct => todo!(), Token::While => ParseRule { prefix: Some(Compiler::parse_while), infix: None, precedence: Precedence::None, }, } } } /// Compilation errors #[derive(Clone, Debug, PartialEq)] pub enum CompileError { // Token errors ExpectedToken { expected: TokenKind, found: TokenOwned, position: Span, }, ExpectedTokenMultiple { expected: &'static [TokenKind], found: TokenOwned, position: Span, }, // Parsing errors CannotChainComparison { position: Span, }, ExpectedExpression { found: TokenOwned, position: Span, }, ExpectedFunction { found: TokenOwned, actual_type: Type, position: Span, }, InvalidAssignmentTarget { found: TokenOwned, position: Span, }, UnexpectedReturn { position: Span, }, // Variable errors CannotMutateImmutableVariable { identifier: String, position: Span, }, ExpectedMutableVariable { found: TokenOwned, position: Span, }, UndeclaredVariable { identifier: String, position: Span, }, VariableOutOfScope { identifier: String, variable_scope: Scope, access_scope: Scope, position: Span, }, // Type errors CannotResolveRegisterType { register_index: usize, position: Span, }, CannotResolveVariableType { identifier: String, position: Span, }, IfElseBranchMismatch { conflict: TypeConflict, position: Span, }, IfMissingElse { position: Span, }, ListItemTypeConflict { conflict: TypeConflict, position: Span, }, // Wrappers around foreign errors Chunk { error: ChunkError, position: Span, }, Lex(LexError), ParseFloatError { error: ParseFloatError, position: Span, }, ParseIntError { error: ParseIntError, position: Span, }, } impl AnnotatedError for CompileError { fn title() -> &'static str { "Compilation Error" } fn description(&self) -> &'static str { match self { Self::CannotChainComparison { .. } => "Cannot chain comparison operations", Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable", Self::CannotResolveRegisterType { .. } => "Cannot resolve register type", Self::CannotResolveVariableType { .. } => "Cannot resolve type", Self::Chunk { .. } => "Chunk error", Self::ExpectedExpression { .. } => "Expected an expression", Self::ExpectedFunction { .. } => "Expected a function", Self::ExpectedMutableVariable { .. } => "Expected a mutable variable", Self::ExpectedToken { .. } => "Expected a specific token", Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens", Self::IfElseBranchMismatch { .. } => "Type mismatch in if/else branches", Self::IfMissingElse { .. } => "If statement missing else branch", Self::InvalidAssignmentTarget { .. } => "Invalid assignment target", Self::Lex(error) => error.description(), Self::ListItemTypeConflict { .. } => "List item type conflict", Self::ParseFloatError { .. } => "Failed to parse float", Self::ParseIntError { .. } => "Failed to parse integer", Self::UndeclaredVariable { .. } => "Undeclared variable", Self::UnexpectedReturn { .. } => "Unexpected return", Self::VariableOutOfScope { .. } => "Variable out of scope", } } fn details(&self) -> Option<String> { match self { Self::CannotMutateImmutableVariable { identifier, .. } => { Some(format!("{identifier} is immutable")) } Self::Chunk { error, .. } => Some(error.to_string()), Self::ExpectedExpression { found, .. } => Some(format!("Found {found}")), Self::ExpectedFunction { found, actual_type, .. } => { Some(format!("Expected \"{found}\" to be a function but it has type {actual_type}")) } Self::ExpectedToken { expected, found, .. } => Some(format!("Expected {expected} but found {found}")), Self::ExpectedTokenMultiple { expected, found, .. } => { let mut details = String::from("Expected"); for (index, token) in expected.iter().enumerate() { details.push_str(&format!(" {token}")); if index < expected.len() - 2 { details.push_str(", "); } if index == expected.len() - 2 { details.push_str(" or"); } } details.push_str(&format!(" but found {found}")); Some(details) } Self::ExpectedMutableVariable { found, .. } => Some(format!("Found {found}")), Self::IfElseBranchMismatch { conflict: TypeConflict { expected, actual }, .. } => Some( format!("This if block evaluates to type \"{expected}\" but the else block evaluates to \"{actual}\"") ), Self::IfMissingElse { .. } => Some( "This \"if\" expression evaluates to a value but is missing an else block" .to_string(), ), Self::InvalidAssignmentTarget { found, .. } => { Some(format!("Cannot assign to {found}")) } Self::Lex(error) => error.details(), Self::ParseFloatError { error, .. } => Some(error.to_string()), Self::ParseIntError { error, .. } => Some(error.to_string()), Self::UndeclaredVariable { identifier, .. } => { Some(format!("{identifier} has not been declared")) } Self::UnexpectedReturn { .. } => None, Self::VariableOutOfScope { identifier, .. } => { Some(format!("{identifier} is out of scope")) } _ => None, } } fn position(&self) -> Span { match self { Self::CannotChainComparison { position } => *position, Self::CannotMutateImmutableVariable { position, .. } => *position, Self::CannotResolveRegisterType { position, .. } => *position, Self::CannotResolveVariableType { position, .. } => *position, Self::Chunk { position, .. } => *position, Self::ExpectedExpression { position, .. } => *position, Self::ExpectedFunction { position, .. } => *position, Self::ExpectedMutableVariable { position, .. } => *position, Self::ExpectedToken { position, .. } => *position, Self::ExpectedTokenMultiple { position, .. } => *position, Self::IfElseBranchMismatch { position, .. } => *position, Self::IfMissingElse { position } => *position, Self::InvalidAssignmentTarget { position, .. } => *position, Self::Lex(error) => error.position(), Self::ListItemTypeConflict { position, .. } => *position, Self::ParseFloatError { position, .. } => *position, Self::ParseIntError { position, .. } => *position, Self::UndeclaredVariable { position, .. } => *position, Self::UnexpectedReturn { position } => *position, Self::VariableOutOfScope { position, .. } => *position, } } } impl From<LexError> for CompileError { fn from(error: LexError) -> Self { Self::Lex(error) } }