use std::fmt::{self, Display, Formatter}; use crate::{Chunk, Span}; #[derive(Clone, Copy, Debug, PartialEq)] pub struct Instruction { pub operation: Operation, pub to_register: u8, pub arguments: [u8; 2], } impl Instruction { pub fn decode(bits: u32) -> Instruction { let operation = Operation::from((bits >> 24) as u8); let to_register = ((bits >> 16) & 0xff) as u8; let arguments = [((bits >> 8) & 0xff) as u8, (bits & 0xff) as u8]; Instruction { operation, to_register, arguments, } } pub fn encode(&self) -> u32 { let operation = u32::from(self.operation as u8); let to_register = u32::from(self.to_register); let arguments = u32::from(self.arguments[0]) << 8 | u32::from(self.arguments[1]); operation << 24 | to_register << 16 | arguments } pub fn r#move(to_register: u8, from_register: u8) -> Instruction { Instruction { operation: Operation::Move, to_register, arguments: [from_register, 0], } } pub fn close(to_register: u8) -> Instruction { Instruction { operation: Operation::Close, to_register, arguments: [0, 0], } } pub fn load_constant(to_register: u8, constant_index: u16) -> Instruction { Instruction { operation: Operation::LoadConstant, to_register, arguments: constant_index.to_le_bytes(), } } pub fn declare_variable(to_register: u8, variable_index: u16) -> Instruction { Instruction { operation: Operation::DeclareVariable, to_register, arguments: variable_index.to_le_bytes(), } } pub fn get_variable(to_register: u8, variable_index: u16) -> Instruction { Instruction { operation: Operation::GetVariable, to_register, arguments: variable_index.to_le_bytes(), } } pub fn set_variable(from_register: u8, variable_index: u16) -> Instruction { Instruction { operation: Operation::SetVariable, to_register: from_register, arguments: variable_index.to_le_bytes(), } } pub fn add(to_register: u8, left_register: u8, right_register: u8) -> Instruction { Instruction { operation: Operation::Add, to_register, arguments: [left_register, right_register], } } pub fn subtract(to_register: u8, left_register: u8, right_register: u8) -> Instruction { Instruction { operation: Operation::Subtract, to_register, arguments: [left_register, right_register], } } pub fn multiply(to_register: u8, left_register: u8, right_register: u8) -> Instruction { Instruction { operation: Operation::Multiply, to_register, arguments: [left_register, right_register], } } pub fn divide(to_register: u8, left_register: u8, right_register: u8) -> Instruction { Instruction { operation: Operation::Divide, to_register, arguments: [left_register, right_register], } } pub fn negate(to_register: u8, from_register: u8) -> Instruction { Instruction { operation: Operation::Negate, to_register, arguments: [from_register, 0], } } pub fn r#return() -> Instruction { Instruction { operation: Operation::Return, to_register: 0, arguments: [0, 0], } } pub fn disassemble(&self, chunk: &Chunk) -> String { match self.operation { Operation::Move => { format!( "{:16} R({}) R({})", self.operation.to_string(), self.to_register, self.arguments[0] ) } Operation::Close => format!("{} R({})", self.operation, self.to_register), Operation::LoadConstant => { let constant_index = u16::from_le_bytes(self.arguments); let constant_display = match chunk.get_constant(constant_index, Span(0, 0)) { Ok(value) => value.to_string(), Err(error) => format!("{:?}", error), }; format!( "{:16} R({}) = C({}) {} ", self.operation.to_string(), self.to_register, constant_index, constant_display ) } Operation::DeclareVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); format!( "{:16} R[C({})] = R({})", self.operation.to_string(), identifier_index, self.to_register ) } Operation::GetVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); format!( "{:16} R{} = R[I({})]", self.operation.to_string(), self.to_register, identifier_index ) } Operation::SetVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); format!( "{:16} R[C({})] = R({})", self.operation.to_string(), identifier_index, self.to_register ) } Operation::Add => { format!( "{:16} R({}) = R({}) + R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Subtract => { format!( "{:16} R({}) = R({}) - R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Multiply => { format!( "{:16} R({}) = R({}) * R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Divide => { format!( "{:16} R({}) = R({}) / R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Negate => { format!( "{:16} R({}) = -R({})", self.operation.to_string(), self.to_register, self.arguments[0] ) } Operation::Return => { format!("{:16}", self.operation.to_string()) } } } } impl Display for Instruction { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self.operation { Operation::Move => { write!( f, "{:16} R({}) R({})", self.operation.to_string(), self.to_register, self.arguments[0] ) } Operation::Close => write!(f, "{} R({})", self.operation, self.to_register), Operation::LoadConstant => { let constant_index = u16::from_le_bytes(self.arguments); write!( f, "{:16} R({}) C({})", self.operation.to_string(), self.to_register, constant_index ) } Operation::DeclareVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); write!( f, "{:16} R[C({})] = R({})", self.operation.to_string(), identifier_index, self.to_register ) } Operation::GetVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); write!( f, "{:16} R{} = R[I({})]", self.operation.to_string(), self.to_register, identifier_index ) } Operation::SetVariable => { let identifier_index = u16::from_le_bytes([self.arguments[0], self.arguments[1]]); write!( f, "{:16} R[C({})] = R({})", self.operation.to_string(), identifier_index, self.to_register ) } Operation::Add => { write!( f, "{:16} R({}) = R({}) + R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Subtract => { write!( f, "{:16} R({}) = R({}) - R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Multiply => { write!( f, "{:16} R({}) = R({}) * R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Divide => { write!( f, "{:16} R({}) = R({}) / R({})", self.operation.to_string(), self.to_register, self.arguments[0], self.arguments[1] ) } Operation::Negate => { write!( f, "{:16} R({}) = -R({})", self.operation.to_string(), self.to_register, self.arguments[0] ) } Operation::Return => { write!(f, "{:16}", self.operation.to_string()) } } } } #[derive(Clone, Copy, Debug, PartialEq)] pub enum Operation { // Stack manipulation Move = 0, Close = 1, // Constants LoadConstant = 2, // Variables DeclareVariable = 3, GetVariable = 4, SetVariable = 5, // Binary operations Add = 6, Subtract = 7, Multiply = 8, Divide = 9, // Unary operations Negate = 10, // Control flow Return = 11, } impl From for Operation { fn from(byte: u8) -> Self { match byte { 0 => Operation::Move, 1 => Operation::Close, 2 => Operation::LoadConstant, 3 => Operation::DeclareVariable, 4 => Operation::GetVariable, 5 => Operation::SetVariable, 6 => Operation::Add, 7 => Operation::Subtract, 8 => Operation::Multiply, 9 => Operation::Divide, 10 => Operation::Negate, _ => Operation::Return, } } } impl Display for Operation { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { Operation::Move => write!(f, "MOVE"), Operation::Close => write!(f, "CLOSE"), Operation::LoadConstant => write!(f, "LOAD_CONSTANT"), Operation::DeclareVariable => write!(f, "DECLARE_VARIABLE"), Operation::GetVariable => write!(f, "GET_VARIABLE"), Operation::SetVariable => write!(f, "SET_VARIABLE"), Operation::Add => write!(f, "ADD"), Operation::Subtract => write!(f, "SUBTRACT"), Operation::Multiply => write!(f, "MULTIPLY"), Operation::Divide => write!(f, "DIVIDE"), Operation::Negate => write!(f, "NEGATE"), Operation::Return => write!(f, "RETURN"), } } } #[cfg(test)] mod tests { use std::mem::size_of; use super::*; #[test] fn instruction_is_32_bits() { assert_eq!(size_of::(), 4); } }