use std::{cell::RefCell, collections::HashMap, rc::Rc}; use chumsky::{input::SpannedInput, pratt::*, prelude::*}; use crate::{ abstract_tree::*, error::Error, identifier::Identifier, lexer::{Control, Keyword, Operator, Token}, }; pub type ParserInput<'src> = SpannedInput, SimpleSpan, &'src [(Token<'src>, SimpleSpan)]>; pub fn parse<'src>(tokens: &'src [(Token<'src>, SimpleSpan)]) -> Result> { let statements = parser(false) .parse(tokens.spanned((tokens.len()..tokens.len()).into())) .into_result() .map_err(|errors| { errors .into_iter() .map(|error| Error::from(error)) .collect::>() })?; Ok(AbstractTree::new(statements)) } pub fn parser<'src>( allow_built_ins: bool, ) -> impl Parser<'src, ParserInput<'src>, Vec, extra::Err, SimpleSpan>>> { let identifiers: RefCell> = RefCell::new(HashMap::new()); let _custom_types: Rc>> = Rc::new(RefCell::new(HashMap::new())); let custom_types = (_custom_types.clone(), _custom_types.clone()); let identifier = select! { Token::Identifier(text) => { let mut identifiers = identifiers.borrow_mut(); if let Some(identifier) = identifiers.get(&text) { identifier.clone() } else { let new = Identifier::new(text); identifiers.insert(text, new.clone()); new } } }; let positioned_identifier = identifier .clone() .map_with(|identifier, state| identifier.with_position(state.span())); let basic_value = select! { Token::Boolean(boolean) => ValueNode::Boolean(boolean), Token::Float(float) => ValueNode::Float(float), Token::Integer(integer) => ValueNode::Integer(integer), Token::String(string) => ValueNode::String(string.to_string()), } .map_with(|value, state| Expression::Value(value.with_position(state.span()))); let r#type = recursive(|r#type| { let function_type = just(Token::Keyword(Keyword::Fn)) .ignore_then( r#type .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ), ) .then_ignore(just(Token::Control(Control::SkinnyArrow))) .then(r#type.clone()) .map(|(parameter_types, return_type)| Type::Function { parameter_types, return_type: Box::new(return_type), }); let list_of = just(Token::Keyword(Keyword::List)) .ignore_then(r#type.clone().delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), )) .map(|item_type| Type::ListOf(Box::new(item_type))); let list_exact = r#type .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::SquareOpen)), just(Token::Control(Control::SquareClose)), ) .map(|types| Type::ListExact(types)); choice(( function_type, list_of, list_exact, just(Token::Keyword(Keyword::Any)).to(Type::Any), just(Token::Keyword(Keyword::Bool)).to(Type::Boolean), just(Token::Keyword(Keyword::Float)).to(Type::Float), just(Token::Keyword(Keyword::Int)).to(Type::Integer), just(Token::Keyword(Keyword::None)).to(Type::None), just(Token::Keyword(Keyword::Range)).to(Type::Range), just(Token::Keyword(Keyword::Str)).to(Type::String), just(Token::Keyword(Keyword::List)).to(Type::List), identifier.clone().map(move |identifier| { if let Some(r#type) = custom_types.0.borrow().get(&identifier) { r#type.clone() } else { Type::Argument(identifier) } }), )) .map_with(|r#type, state| r#type.with_position(state.span())) }); let type_argument = identifier .clone() .map_with(|identifier, state| Type::Argument(identifier).with_position(state.span())); let type_specification = just(Token::Control(Control::Colon)).ignore_then(r#type.clone()); let structure_field_definition = identifier.clone().then(type_specification.clone()); let structure_definition = just(Token::Keyword(Keyword::Struct)) .ignore_then(identifier.clone()) .then( structure_field_definition .separated_by(just(Token::Control(Control::Comma))) .allow_trailing() .collect::)>>() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ), ) .map_with(move |(name, fields), state| { let definition = StructureDefinition::new(name.clone(), fields.clone()); let r#type = Type::Structure { name: name.clone(), fields, }; custom_types.1.borrow_mut().insert(name, r#type); Statement::StructureDefinition(definition.with_position(state.span())) }); let statement = recursive(|statement| { let allow_built_ins = allow_built_ins.clone(); let block = statement .clone() .repeated() .collect() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ) .map_with(|statements, state| Block::new(statements).with_position(state.span())); let expression = recursive(|expression| { let allow_built_ins = allow_built_ins.clone(); let identifier_expression = identifier.clone().map_with(|identifier, state| { Expression::Identifier(identifier.with_position(state.span())) }); let raw_integer = select! { Token::Integer(integer) => integer }; let range = raw_integer .clone() .then_ignore(just(Token::Control(Control::DoubleDot))) .then(raw_integer) .map_with(|(start, end), state| { Expression::Value(ValueNode::Range(start..end).with_position(state.span())) }); let list = expression .clone() .separated_by(just(Token::Control(Control::Comma))) .allow_trailing() .collect() .delimited_by( just(Token::Control(Control::SquareOpen)), just(Token::Control(Control::SquareClose)), ) .map_with(|list, state| { Expression::Value(ValueNode::List(list).with_position(state.span())) }); let map_assignment = identifier .clone() .then(type_specification.clone().or_not()) .then_ignore(just(Token::Operator(Operator::Assign))) .then(expression.clone()) .map(|((identifier, r#type), expression)| (identifier, r#type, expression)); let map = map_assignment .separated_by(just(Token::Control(Control::Comma)).or_not()) .allow_trailing() .collect() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ) .map_with(|map_assigment_list, state| { Expression::Value( ValueNode::Map(map_assigment_list).with_position(state.span()), ) }); let type_arguments = type_argument .clone() .separated_by(just(Token::Control(Control::Comma))) .at_least(1) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ); let parsed_function = type_arguments .or_not() .then( identifier .clone() .then(type_specification.clone()) .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ) .then(r#type.clone()) .then(block.clone()), ) .map_with( |(type_arguments, ((parameters, return_type), body)), state| { Expression::Value( ValueNode::ParsedFunction { type_arguments: type_arguments .unwrap_or_else(|| Vec::with_capacity(0)), parameters, return_type, body, } .with_position(state.span()), ) }, ); let built_in_function_call = choice(( just(Token::Keyword(Keyword::ReadLine)) .ignore_then(just(Token::Control(Control::ParenOpen))) .to(BuiltInFunctionCall::ReadLine), just(Token::Keyword(Keyword::Sleep)) .ignore_then(just(Token::Control(Control::ParenOpen))) .ignore_then(expression.clone()) .map(|expression| BuiltInFunctionCall::Sleep(expression)), just(Token::Keyword(Keyword::WriteLine)) .ignore_then(just(Token::Control(Control::ParenOpen))) .ignore_then(expression.clone()) .map(|expression| BuiltInFunctionCall::WriteLine(expression)), )) .then_ignore(just(Token::Control(Control::ParenClose))) .try_map_with(move |built_in_function_call, state| { if allow_built_ins { Ok(Expression::BuiltInFunctionCall( Box::new(built_in_function_call).with_position(state.span()), )) } else { Err(Rich::custom( state.span(), "Built-in function calls can only be used by the standard library.", )) } }); let structure_field = identifier .clone() .then_ignore(just(Token::Operator(Operator::Assign))) .then(expression.clone()); let structure_instance = positioned_identifier .clone() .then( structure_field .separated_by(just(Token::Control(Control::Comma))) .allow_trailing() .collect() .delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), ), ) .map_with(|(name, fields), state| { Expression::Value( ValueNode::Structure { name, fields }.with_position(state.span()), ) }); let turbofish = r#type .clone() .separated_by(just(Token::Control(Control::Comma))) .at_least(1) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ) .delimited_by( just(Token::Control(Control::DoubleColon)), just(Token::Control(Control::DoubleColon)), ); let map_atom = choice(( map.clone(), structure_instance.clone(), identifier_expression.clone(), )); let map_index = map_atom .then_ignore(just(Token::Control(Control::Dot))) .then(positioned_identifier.clone()) .map_with(|(expression, identifier), state| { Expression::MapIndex( Box::new(MapIndex::new(expression, identifier)).with_position(state.span()), ) }); let atom = choice(( map_index.clone(), range.clone(), parsed_function.clone(), list.clone(), basic_value.clone(), map.clone(), structure_instance.clone(), identifier_expression.clone(), expression.clone().delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ), )); let logic_math_indexes_and_function_calls = atom.pratt(( prefix( 2, just(Token::Operator(Operator::Not)), |_, expression, span| { Expression::Logic(Box::new(Logic::Not(expression)).with_position(span)) }, ), postfix( 2, expression.clone().delimited_by( just(Token::Control(Control::SquareOpen)), just(Token::Control(Control::SquareClose)), ), |left, right, span| { Expression::ListIndex( Box::new(ListIndex::new(left, right)).with_position(span), ) }, ), postfix( 3, turbofish.clone().or_not().then( expression .clone() .separated_by(just(Token::Control(Control::Comma))) .collect() .delimited_by( just(Token::Control(Control::ParenOpen)), just(Token::Control(Control::ParenClose)), ), ), |function_expression, (type_arguments, arguments): ( Option>>, Vec, ), span| { Expression::FunctionCall( FunctionCall::new( function_expression, type_arguments.unwrap_or_else(|| Vec::with_capacity(0)), arguments, ) .with_position(span), ) }, ), infix( left(1), just(Token::Operator(Operator::Equal)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Equal(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::NotEqual)), |left, _, right, span| { Expression::Logic( Box::new(Logic::NotEqual(left, right)).with_position(span), ) }, ), infix( left(1), just(Token::Operator(Operator::Greater)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Greater(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::Less)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Less(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::GreaterOrEqual)), |left, _, right, span| { Expression::Logic( Box::new(Logic::GreaterOrEqual(left, right)).with_position(span), ) }, ), infix( left(1), just(Token::Operator(Operator::LessOrEqual)), |left, _, right, span| { Expression::Logic( Box::new(Logic::LessOrEqual(left, right)).with_position(span), ) }, ), infix( left(1), just(Token::Operator(Operator::And)), |left, _, right, span| { Expression::Logic(Box::new(Logic::And(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::Or)), |left, _, right, span| { Expression::Logic(Box::new(Logic::Or(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::Add)), |left, _, right, span| { Expression::Math(Box::new(Math::Add(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::Subtract)), |left, _, right, span| { Expression::Math(Box::new(Math::Subtract(left, right)).with_position(span)) }, ), infix( left(2), just(Token::Operator(Operator::Multiply)), |left, _, right, span| { Expression::Math(Box::new(Math::Multiply(left, right)).with_position(span)) }, ), infix( left(2), just(Token::Operator(Operator::Divide)), |left, _, right, span| { Expression::Math(Box::new(Math::Divide(left, right)).with_position(span)) }, ), infix( left(1), just(Token::Operator(Operator::Modulo)), |left, _, right, span| { Expression::Math(Box::new(Math::Modulo(left, right)).with_position(span)) }, ), )); choice(( logic_math_indexes_and_function_calls, map_index, built_in_function_call, range, structure_instance, parsed_function, list, map, basic_value, identifier_expression, )) }); let expression_statement = expression .clone() .map(|expression| Statement::Expression(expression)); let async_block = just(Token::Keyword(Keyword::Async)) .ignore_then(statement.clone().repeated().collect().delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), )) .map_with(|statements, state| { Statement::AsyncBlock(AsyncBlock::new(statements).with_position(state.span())) }); let r#break = just(Token::Keyword(Keyword::Break)) .map_with(|_, state| Statement::Break(().with_position(state.span()))); let assignment = positioned_identifier .clone() .then(type_specification.clone().or_not()) .then(choice(( just(Token::Operator(Operator::Assign)).to(AssignmentOperator::Assign), just(Token::Operator(Operator::AddAssign)).to(AssignmentOperator::AddAssign), just(Token::Operator(Operator::SubAssign)).to(AssignmentOperator::SubAssign), ))) .then(statement.clone()) .map_with(|(((identifier, r#type), operator), statement), state| { Statement::Assignment( Assignment::new(identifier, r#type, operator, statement) .with_position(state.span()), ) }); let block_statement = block.clone().map(|block| Statement::Block(block)); let r#loop = statement .clone() .repeated() .at_least(1) .collect() .delimited_by( just(Token::Keyword(Keyword::Loop)).then(just(Token::Control(Control::CurlyOpen))), just(Token::Control(Control::CurlyClose)), ) .map_with(|statements, state| { Statement::Loop(Loop::new(statements).with_position(state.span())) }); let r#while = just(Token::Keyword(Keyword::While)) .ignore_then(expression.clone()) .then(statement.clone().repeated().collect().delimited_by( just(Token::Control(Control::CurlyOpen)), just(Token::Control(Control::CurlyClose)), )) .map_with(|(expression, statements), state| { Statement::While(While::new(expression, statements).with_position(state.span())) }); let if_else = just(Token::Keyword(Keyword::If)) .ignore_then(expression.clone()) .then(block.clone()) .then( just(Token::Keyword(Keyword::Else)) .ignore_then(just(Token::Keyword(Keyword::If))) .ignore_then(expression.clone()) .then(block.clone()) .repeated() .collect(), ) .then( just(Token::Keyword(Keyword::Else)) .ignore_then(block.clone()) .or_not(), ) .map_with( |(((if_expression, if_block), else_ifs), else_block), state| { Statement::IfElse( IfElse::new(if_expression, if_block, else_ifs, else_block) .with_position(state.span()), ) }, ); choice(( async_block, structure_definition, if_else, assignment, expression_statement, r#break, block_statement, r#loop, r#while, )) .then_ignore(just(Token::Control(Control::Semicolon)).or_not()) }); statement.clone().repeated().collect() } #[cfg(test)] mod tests { use crate::lexer::lex; use super::*; #[test] fn built_in_function() { let tokens = lex("READ_LINE()").unwrap(); let statements = parser(true) .parse(tokens.spanned((tokens.len()..tokens.len()).into())) .into_result() .map_err(|errors| { errors .into_iter() .map(|error| Error::from(error)) .collect::>() }) .unwrap(); assert_eq!( statements[0], Statement::Expression(Expression::BuiltInFunctionCall( Box::new(BuiltInFunctionCall::ReadLine).with_position((0, 11)) )) ); let tokens = lex("WRITE_LINE('hiya')").unwrap(); let statements = parser(true) .parse(tokens.spanned((tokens.len()..tokens.len()).into())) .into_result() .map_err(|errors| { errors .into_iter() .map(|error| Error::from(error)) .collect::>() }) .unwrap(); assert_eq!( statements[0], Statement::Expression(Expression::BuiltInFunctionCall( Box::new(BuiltInFunctionCall::WriteLine(Expression::Value( ValueNode::String("hiya".to_string()).with_position((11, 17)) ))) .with_position((0, 18)) )) ); } #[test] fn async_block() { assert_eq!( parse( &lex(" async { 1 2 3 } ") .unwrap() ) .unwrap()[0], Statement::AsyncBlock( AsyncBlock::new(vec![ Statement::Expression(Expression::Value( ValueNode::Integer(1).with_position((53, 54)) )), Statement::Expression(Expression::Value( ValueNode::Integer(2).with_position((79, 80)) )), Statement::Expression(Expression::Value( ValueNode::Integer(3).with_position((105, 106)) )), ]) .with_position((21, 128)) ) ) } #[test] fn structure_instance() { assert_eq!( parse( &lex(" Foo { bar = 42, baz = 'hiya', } ") .unwrap() ) .unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Structure { name: Identifier::new("Foo").with_position((21, 24)), fields: vec![ ( Identifier::new("bar"), Expression::Value(ValueNode::Integer(42).with_position((57, 59))) ), ( Identifier::new("baz"), Expression::Value( ValueNode::String("hiya".to_string()).with_position((91, 97)) ) ), ] } .with_position((21, 120)) )) ) } #[test] fn structure_definition() { assert_eq!( parse( &lex(" struct Foo { bar : int, baz : str, } ") .unwrap() ) .unwrap()[0], Statement::StructureDefinition( StructureDefinition::new( Identifier::new("Foo"), vec![ ( Identifier::new("bar"), Type::Integer.with_position((64, 67)) ), ( Identifier::new("baz"), Type::String.with_position((99, 102)) ), ] ) .with_position((21, 125)) ) ) } #[test] fn map_index() { assert_eq!( parse(&lex("{ x = 42 }.x").unwrap()).unwrap()[0], Statement::Expression(Expression::MapIndex( Box::new(MapIndex::new( Expression::Value( ValueNode::Map(vec![( Identifier::new("x"), None, Expression::Value(ValueNode::Integer(42).with_position((6, 8))) )]) .with_position((0, 10)) ), Identifier::new("x").with_position((11, 12)) )) .with_position((0, 12)) )) ); assert_eq!( parse(&lex("foo.x").unwrap()).unwrap()[0], Statement::Expression(Expression::MapIndex( Box::new(MapIndex::new( Expression::Identifier(Identifier::new("foo").with_position((0, 3))), Identifier::new("x").with_position((4, 5)) )) .with_position((0, 5)) )) ); } #[test] fn r#while() { assert_eq!( parse(&lex("while true { output('hi') }").unwrap()).unwrap()[0], Statement::While( While::new( Expression::Value(ValueNode::Boolean(true).with_position((6, 10))), vec![Statement::Expression(Expression::FunctionCall( FunctionCall::new( Expression::Identifier( Identifier::new("output").with_position((13, 19)) ), Vec::with_capacity(0), vec![Expression::Value( ValueNode::String("hi".to_string()).with_position((20, 24)) )] ) .with_position((13, 25)) ))] ) .with_position((0, 27)) ) ) } #[test] fn boolean_type() { assert_eq!( parse(&lex("foobar : bool = true").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some(Type::Boolean.with_position((9, 13))), AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::Boolean(true).with_position((16, 20)) )) ) .with_position((0, 20)) ) ); } #[test] fn list_type() { assert_eq!( parse(&lex("foobar: list = []").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some(Type::List.with_position((8, 12))), AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::List(vec![]).with_position((15, 17)) )) ) .with_position((0, 17)) ) ); } #[test] fn list_of_type() { assert_eq!( parse(&lex("foobar : list(bool) = [true]").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some( Type::ListOf(Box::new(Type::Boolean.with_position((14, 18)))) .with_position((9, 19)) ), AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::List(vec![Expression::Value( ValueNode::Boolean(true).with_position((23, 27)) )]) .with_position((22, 28)) )) ) .with_position((0, 28)) ) ); } #[test] fn list_exact_type() { assert_eq!( parse(&lex("foobar : [bool, str] = [true, '42']").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some( Type::ListExact(vec![ Type::Boolean.with_position((10, 14)), Type::String.with_position((16, 19)) ]) .with_position((9, 20)) ), AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::List(vec![ Expression::Value(ValueNode::Boolean(true).with_position((24, 28))), Expression::Value( ValueNode::String("42".to_string()).with_position((30, 34)) ) ]) .with_position((23, 35)) )) ) .with_position((0, 35)) ) ); } #[test] fn function_type() { assert_eq!( parse(&lex("foobar : fn() -> any = some_function").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some( Type::Function { parameter_types: vec![], return_type: Box::new(Type::Any.with_position((17, 20))) } .with_position((9, 20)) ), AssignmentOperator::Assign, Statement::Expression(Expression::Identifier( Identifier::new("some_function").with_position((23, 36)) )) ) .with_position((0, 36)) ) ); } #[test] fn function_call() { assert_eq!( parse(&lex("foobar()").unwrap()).unwrap()[0], Statement::Expression(Expression::FunctionCall( FunctionCall::new( Expression::Identifier(Identifier::new("foobar").with_position((0, 6))), Vec::with_capacity(0), Vec::with_capacity(0), ) .with_position((0, 8)) )) ) } #[test] fn function_call_with_type_arguments() { assert_eq!( parse(&lex("foobar::(str)::('hi')").unwrap()).unwrap()[0], Statement::Expression(Expression::FunctionCall( FunctionCall::new( Expression::Identifier(Identifier::new("foobar").with_position((0, 6))), vec![Type::String.with_position((9, 12))], vec![Expression::Value( ValueNode::String("hi".to_string()).with_position((16, 20)) )], ) .with_position((0, 21)) )) ) } #[test] fn range() { assert_eq!( parse(&lex("1..10").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Range(1..10).with_position((0, 5)) )) ) } #[test] fn function() { assert_eq!( parse(&lex("(x: int) int { x }").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::ParsedFunction { type_arguments: Vec::with_capacity(0), parameters: vec![(Identifier::new("x"), Type::Integer.with_position((4, 7)))], return_type: Type::Integer.with_position((9, 12)), body: Block::new(vec![Statement::Expression(Expression::Identifier( Identifier::new("x").with_position((15, 16)) ))]) .with_position((13, 18)), } .with_position((0, 18)) ),) ) } #[test] fn function_with_type_arguments() { assert_eq!( parse(&lex("(T, U)(x: T, y: U) T { x }").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::ParsedFunction { type_arguments: vec![ Type::Argument(Identifier::new("T")).with_position((1, 2)), Type::Argument(Identifier::new("U")).with_position((4, 5)), ], parameters: vec![ ( Identifier::new("x"), Type::Argument(Identifier::new("T")).with_position((10, 11)) ), ( Identifier::new("y"), Type::Argument(Identifier::new("U")).with_position((16, 17)) ) ], return_type: Type::Argument(Identifier::new("T")).with_position((19, 20)), body: Block::new(vec![Statement::Expression(Expression::Identifier( Identifier::new("x").with_position((23, 24)) ))]) .with_position((21, 26)), } .with_position((0, 26)) )) ) } #[test] fn r#if() { assert_eq!( parse(&lex("if true { 'foo' }").unwrap()).unwrap()[0], Statement::IfElse( IfElse::new( Expression::Value(ValueNode::Boolean(true).with_position((3, 7))), Block::new(vec![Statement::Expression(Expression::Value( ValueNode::String("foo".to_string()).with_position((10, 15)) ))]) .with_position((8, 17)), Vec::with_capacity(0), None ) .with_position((0, 17)) ) ); } #[test] fn if_else() { assert_eq!( parse(&lex("if true {'foo' } else { 'bar' }").unwrap()).unwrap()[0], Statement::IfElse( IfElse::new( Expression::Value(ValueNode::Boolean(true).with_position((3, 7))), Block::new(vec![Statement::Expression(Expression::Value( ValueNode::String("foo".to_string()).with_position((9, 14)) ))]) .with_position((8, 16)), Vec::with_capacity(0), Some( Block::new(vec![Statement::Expression(Expression::Value( ValueNode::String("bar".to_string()).with_position((24, 29)) ))]) .with_position((22, 31)) ) ) .with_position((0, 31)), ) ) } #[test] fn map() { assert_eq!( parse(&lex("{ foo = 'bar' }").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Map(vec![( Identifier::new("foo"), None, Expression::Value(ValueNode::String("bar".to_string()).with_position((8, 13))) )]) .with_position((0, 15)) ),) ); assert_eq!( parse(&lex("{ x = 1, y = 2, }").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Map(vec![ ( Identifier::new("x"), None, Expression::Value(ValueNode::Integer(1).with_position((6, 7))) ), ( Identifier::new("y"), None, Expression::Value(ValueNode::Integer(2).with_position((13, 14))) ), ]) .with_position((0, 17)) ),) ); assert_eq!( parse(&lex("{ x = 1 y = 2 }").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Map(vec![ ( Identifier::new("x"), None, Expression::Value(ValueNode::Integer(1).with_position((6, 7))) ), ( Identifier::new("y"), None, Expression::Value(ValueNode::Integer(2).with_position((12, 13))) ), ]) .with_position((0, 15)) ),) ); } #[test] fn math() { assert_eq!( parse(&lex("1 + 1").unwrap()).unwrap()[0], Statement::Expression(Expression::Math( Box::new(Math::Add( Expression::Value(ValueNode::Integer(1).with_position((0, 1))), Expression::Value(ValueNode::Integer(1).with_position((4, 5))) )) .with_position((0, 5)) )) ); } #[test] fn r#loop() { assert_eq!( parse(&lex("loop { 42 }").unwrap()).unwrap()[0], Statement::Loop( Loop::new(vec![Statement::Expression(Expression::Value( ValueNode::Integer(42).with_position((7, 9)) ))]) .with_position((0, 11)) ) ); assert_eq!( parse(&lex("loop { if i > 2 { break } else { i += 1 } }").unwrap()).unwrap()[0], Statement::Loop( Loop::new(vec![Statement::IfElse( IfElse::new( Expression::Logic( Box::new(Logic::Greater( Expression::Identifier( Identifier::new("i").with_position((10, 11)) ), Expression::Value(ValueNode::Integer(2).with_position((14, 15))) )) .with_position((10, 15)) ), Block::new(vec![Statement::Break(().with_position((18, 23)))]) .with_position((16, 25)), Vec::with_capacity(0), Some( Block::new(vec![Statement::Assignment( Assignment::new( Identifier::new("i").with_position((33, 34)), None, AssignmentOperator::AddAssign, Statement::Expression(Expression::Value( ValueNode::Integer(1).with_position((38, 39)) )) ) .with_position((33, 39)) )]) .with_position((31, 41)) ) ) .with_position((7, 41)) )]) .with_position((0, 43)) ) ); } #[test] fn block() { assert_eq!( parse(&lex("{ x }").unwrap()).unwrap()[0], Statement::Block( Block::new(vec![Statement::Expression(Expression::Identifier( Identifier::new("x").with_position((2, 3)) ),)]) .with_position((0, 5)) ) ); assert_eq!( parse( &lex(" { x; y; z } ") .unwrap() ) .unwrap()[0], Statement::Block( Block::new(vec![ Statement::Expression(Expression::Identifier( Identifier::new("x").with_position((39, 40)) )), Statement::Expression(Expression::Identifier( Identifier::new("y").with_position((62, 63)) )), Statement::Expression(Expression::Identifier( Identifier::new("z").with_position((85, 86)) )), ]) .with_position((17, 104)), ) ); assert_eq!( parse( &lex(" { 1 == 1 z } ") .unwrap() ) .unwrap()[0], Statement::Block( Block::new(vec![ Statement::Expression(Expression::Logic( Box::new(Logic::Equal( Expression::Value(ValueNode::Integer(1).with_position((39, 40))), Expression::Value(ValueNode::Integer(1).with_position((44, 45))) )) .with_position((39, 45)) )), Statement::Expression(Expression::Identifier( Identifier::new("z").with_position((66, 67)) )), ]) .with_position((17, 85)), ) ); } #[test] fn identifier() { assert_eq!( parse(&lex("x").unwrap()).unwrap()[0], Statement::Expression(Expression::Identifier( Identifier::new("x").with_position((0, 1)) )) ); assert_eq!( parse(&lex("foobar").unwrap()).unwrap()[0], Statement::Expression(Expression::Identifier( Identifier::new("foobar").with_position((0, 6)) )) ); assert_eq!( parse(&lex("HELLO").unwrap()).unwrap()[0], Statement::Expression(Expression::Identifier( Identifier::new("HELLO").with_position((0, 5)) )) ); } #[test] fn assignment() { assert_eq!( parse(&lex("foobar = 1").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), None, AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::Integer(1).with_position((9, 10)) )) ) .with_position((0, 10)), ) ); } #[test] fn assignment_with_type() { assert_eq!( parse(&lex("foobar: int = 1").unwrap()).unwrap()[0], Statement::Assignment( Assignment::new( Identifier::new("foobar").with_position((0, 6)), Some(Type::Integer.with_position((8, 11))), AssignmentOperator::Assign, Statement::Expression(Expression::Value( ValueNode::Integer(1).with_position((14, 15)) )) ) .with_position((0, 15)), ) ); } #[test] fn logic() { assert_eq!( parse(&lex("x == 1").unwrap()).unwrap()[0], Statement::Expression(Expression::Logic( Box::new(Logic::Equal( Expression::Identifier(Identifier::new("x").with_position((0, 1))), Expression::Value(ValueNode::Integer(1).with_position((5, 6))), )) .with_position((0, 6)) )) ); assert_eq!( parse(&lex("(x == 1) && (y == 2)").unwrap()).unwrap()[0], Statement::Expression(Expression::Logic( Box::new(Logic::And( Expression::Logic( Box::new(Logic::Equal( Expression::Identifier(Identifier::new("x").with_position((1, 2))), Expression::Value(ValueNode::Integer(1).with_position((6, 7))), )) .with_position((1, 7)) ), Expression::Logic( Box::new(Logic::Equal( Expression::Identifier(Identifier::new("y").with_position((13, 14))), Expression::Value(ValueNode::Integer(2).with_position((18, 19))), )) .with_position((13, 19)) ) )) .with_position((0, 20)) )) ); assert_eq!( parse(&lex("(x == 1) && (y == 2) && true").unwrap()).unwrap()[0], Statement::Expression(Expression::Logic( Box::new(Logic::And( Expression::Logic( Box::new(Logic::And( Expression::Logic( Box::new(Logic::Equal( Expression::Identifier( Identifier::new("x").with_position((1, 2)) ), Expression::Value(ValueNode::Integer(1).with_position((6, 7))) )) .with_position((1, 7)) ), Expression::Logic( Box::new(Logic::Equal( Expression::Identifier( Identifier::new("y").with_position((13, 14)) ), Expression::Value( ValueNode::Integer(2).with_position((18, 19)) ) )) .with_position((13, 19)) ), )) .with_position((0, 20)) ), Expression::Value(ValueNode::Boolean(true).with_position((24, 28))) )) .with_position((0, 28)) )) ); } #[test] fn list() { assert_eq!( parse(&lex("[]").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::List(Vec::with_capacity(0)).with_position((0, 2)) ),) ); assert_eq!( parse(&lex("[42]").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::List(vec![Expression::Value( ValueNode::Integer(42).with_position((1, 3)) )]) .with_position((0, 4)) )) ); assert_eq!( parse(&lex("[42, 'foo', 'bar', [1, 2, 3,]]").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::List(vec![ Expression::Value(ValueNode::Integer(42).with_position((1, 3))), Expression::Value(ValueNode::String("foo".to_string()).with_position((5, 10))), Expression::Value(ValueNode::String("bar".to_string()).with_position((12, 17))), Expression::Value( ValueNode::List(vec![ Expression::Value(ValueNode::Integer(1).with_position((20, 21))), Expression::Value(ValueNode::Integer(2).with_position((23, 24))), Expression::Value(ValueNode::Integer(3).with_position((26, 27))), ]) .with_position((19, 29)) ) ]) .with_position((0, 30)) ),) ); } #[test] fn r#true() { assert_eq!( parse(&lex("true").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Boolean(true).with_position((0, 4)) )) ); } #[test] fn r#false() { assert_eq!( parse(&lex("false").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Boolean(false).with_position((0, 5)) )) ); } #[test] fn positive_float() { assert_eq!( parse(&lex("0.0").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(0.0).with_position((0, 3)) )) ); assert_eq!( parse(&lex("42.0").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(42.0).with_position((0, 4)) )) ); let max_float = f64::MAX.to_string() + ".0"; assert_eq!( parse(&lex(&max_float).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(f64::MAX).with_position((0, 311)) )) ); let min_positive_float = f64::MIN_POSITIVE.to_string(); assert_eq!( parse(&lex(&min_positive_float).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(f64::MIN_POSITIVE).with_position((0, 326)) ),) ); } #[test] fn negative_float() { assert_eq!( parse(&lex("-0.0").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(-0.0).with_position((0, 4)) )) ); assert_eq!( parse(&lex("-42.0").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(-42.0).with_position((0, 5)) )) ); let min_float = f64::MIN.to_string() + ".0"; assert_eq!( parse(&lex(&min_float).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(f64::MIN).with_position((0, 312)) )) ); let max_negative_float = format!("-{}", f64::MIN_POSITIVE); assert_eq!( parse(&lex(&max_negative_float).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(-f64::MIN_POSITIVE).with_position((0, 327)) ),) ); } #[test] fn other_float() { assert_eq!( parse(&lex("Infinity").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(f64::INFINITY).with_position((0, 8)) )) ); assert_eq!( parse(&lex("-Infinity").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Float(f64::NEG_INFINITY).with_position((0, 9)) )) ); if let Statement::Expression(Expression::Value(WithPosition { node: ValueNode::Float(float), .. })) = &parse(&lex("NaN").unwrap()).unwrap()[0] { assert!(float.is_nan()); } else { panic!("Expected a float."); } } #[test] fn positive_integer() { for i in 0..10 { let source = i.to_string(); let tokens = lex(&source).unwrap(); let statements = parse(&tokens).unwrap(); assert_eq!( statements[0], Statement::Expression(Expression::Value( ValueNode::Integer(i).with_position((0, 1)) )) ) } assert_eq!( parse(&lex("42").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Integer(42).with_position((0, 2)) )) ); let maximum_integer = i64::MAX.to_string(); assert_eq!( parse(&lex(&maximum_integer).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Integer(i64::MAX).with_position((0, 19)) )) ); } #[test] fn negative_integer() { for i in -9..0 { let source = i.to_string(); let tokens = lex(&source).unwrap(); let statements = parse(&tokens).unwrap(); assert_eq!( statements[0], Statement::Expression(Expression::Value( ValueNode::Integer(i).with_position((0, 2)) )) ) } assert_eq!( parse(&lex("-42").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Integer(-42).with_position((0, 3)) )) ); let minimum_integer = i64::MIN.to_string(); assert_eq!( parse(&lex(&minimum_integer).unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::Integer(i64::MIN).with_position((0, 20)) )) ); } #[test] fn double_quoted_string() { assert_eq!( parse(&lex("\"\"").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("".to_string()).with_position((0, 2)) )) ); assert_eq!( parse(&lex("\"42\"").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("42".to_string()).with_position((0, 4)) ),) ); assert_eq!( parse(&lex("\"foobar\"").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("foobar".to_string()).with_position((0, 8)) ),) ); } #[test] fn single_quoted_string() { assert_eq!( parse(&lex("''").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("".to_string()).with_position((0, 2)) )) ); assert_eq!( parse(&lex("'42'").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("42".to_string()).with_position((0, 4)) ),) ); assert_eq!( parse(&lex("'foobar'").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("foobar".to_string()).with_position((0, 8)) ),) ); } #[test] fn grave_quoted_string() { assert_eq!( parse(&lex("``").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("".to_string()).with_position((0, 2)) )) ); assert_eq!( parse(&lex("`42`").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("42".to_string()).with_position((0, 4)) ),) ); assert_eq!( parse(&lex("`foobar`").unwrap()).unwrap()[0], Statement::Expression(Expression::Value( ValueNode::String("foobar".to_string()).with_position((0, 8)) ),) ); } }