use serde::{Deserialize, Serialize}; use crate::{ error::{RuntimeError, SyntaxError, ValidationError}, AbstractTree, Error, Expression, Format, FunctionExpression, Map, SourcePosition, SyntaxNode, Type, Value, }; /// A function being invoked and the arguments it is being passed. #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, PartialOrd, Ord)] pub struct FunctionCall { function_expression: FunctionExpression, arguments: Vec, syntax_position: SourcePosition, } impl FunctionCall { /// Returns a new FunctionCall. pub fn new( function_expression: FunctionExpression, arguments: Vec, syntax_position: SourcePosition, ) -> Self { Self { function_expression, arguments, syntax_position, } } } impl AbstractTree for FunctionCall { fn from_syntax(node: SyntaxNode, source: &str, context: &Map) -> Result { Error::expect_syntax_node(source, "function_call", node)?; let function_node = node.child(0).unwrap(); let function_expression = FunctionExpression::from_syntax(function_node, source, context)?; let mut arguments = Vec::new(); for index in 2..node.child_count() - 1 { let child = node.child(index).unwrap(); if child.is_named() { let expression = Expression::from_syntax(child, source, context)?; arguments.push(expression); } } Ok(FunctionCall { function_expression, arguments, syntax_position: node.range().into(), }) } fn expected_type(&self, context: &Map) -> Result { match &self.function_expression { FunctionExpression::Identifier(identifier) => { let identifier_type = identifier.expected_type(context)?; if let Type::Function { parameter_types: _, return_type, } = &identifier_type { Ok(*return_type.clone()) } else { Ok(identifier_type) } } FunctionExpression::FunctionCall(function_call) => function_call.expected_type(context), FunctionExpression::Value(value_node) => { let value_type = value_node.expected_type(context)?; if let Type::Function { return_type, .. } = value_type { Ok(*return_type) } else { Ok(value_type) } } FunctionExpression::Index(index) => index.expected_type(context), FunctionExpression::Yield(r#yield) => r#yield.expected_type(context), } } fn check_type(&self, _source: &str, context: &Map) -> Result<(), ValidationError> { let function_expression_type = self.function_expression.expected_type(context)?; let parameter_types = match function_expression_type { Type::Function { parameter_types, .. } => parameter_types, Type::Any => return Ok(()), _ => { return Err(ValidationError::TypeCheckExpectedFunction { actual: function_expression_type, position: self.syntax_position, }); } }; if self.arguments.len() != parameter_types.len() { return Err(ValidationError::ExpectedFunctionArgumentAmount { expected: parameter_types.len(), actual: self.arguments.len(), position: self.syntax_position, }); } for (index, expression) in self.arguments.iter().enumerate() { if let Some(expected) = parameter_types.get(index) { let actual = expression.expected_type(context)?; if !expected.accepts(&actual) { return Err(ValidationError::TypeCheck { expected: expected.clone(), actual, position: self.syntax_position, }); } } } Ok(()) } fn run(&self, source: &str, context: &Map) -> Result { let value = match &self.function_expression { FunctionExpression::Identifier(identifier) => { let key = identifier.inner(); let variables = context.variables()?; if let Some((value, _)) = variables.get(key) { value.clone() } else { return Err(RuntimeError::VariableIdentifierNotFound( identifier.inner().clone(), )); } } FunctionExpression::FunctionCall(function_call) => { function_call.run(source, context)? } FunctionExpression::Value(value_node) => value_node.run(source, context)?, FunctionExpression::Index(index) => index.run(source, context)?, FunctionExpression::Yield(r#yield) => r#yield.run(source, context)?, }; let mut arguments = Vec::with_capacity(self.arguments.len()); for expression in &self.arguments { let value = expression.run(source, context)?; arguments.push(value); } value.as_function()?.call(&arguments, source, context) } } impl Format for FunctionCall { fn format(&self, output: &mut String, indent_level: u8) { self.function_expression.format(output, indent_level); output.push('('); for expression in &self.arguments { expression.format(output, indent_level); } output.push(')'); } }