//! Virtual machine for running the abstract syntax tree. //! //! This module provides three running option: //! - `run` convenience function that takes a source code string and runs it //! - `run_with_context` convenience function that takes a source code string and a context //! - `Vm` struct that can be used to run an abstract syntax tree use std::{ collections::HashMap, fmt::{self, Display, Formatter}, sync::{Arc, Mutex}, }; use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator}; use crate::{ ast::{ AbstractSyntaxTree, BlockExpression, CallExpression, ComparisonOperator, ElseExpression, FieldAccessExpression, IfExpression, LetStatement, ListExpression, ListIndexExpression, LiteralExpression, LogicOperator, LoopExpression, MapExpression, MathOperator, Node, OperatorExpression, PrimitiveValueExpression, RangeExpression, Span, Statement, StructDefinition, StructExpression, }, parse, Analyzer, BuiltInFunctionError, Constructor, Context, ContextData, DustError, Expression, Function, Identifier, ParseError, StructType, Type, Value, ValueError, }; /// Run the source code and return the result. /// /// # Example /// ``` /// # use dust_lang::vm::run; /// # use dust_lang::value::Value; /// let result = run("40 + 2"); /// /// assert_eq!(result, Ok(Some(Value::Integer(42)))); /// ``` pub fn run(source: &str) -> Result, DustError> { let context = Context::new(); run_with_context(source, context) } /// Run the source code with a context and return the result. /// /// # Example /// ``` /// # use dust_lang::{Context, Identifier, Value, run_with_context}; /// let context = Context::new(); /// /// context.set_value(Identifier::new("foo"), Value::Integer(40)); /// context.update_last_position(&Identifier::new("foo"), (100, 100)); /// /// let result = run_with_context("foo + 2", context); /// /// assert_eq!(result, Ok(Some(Value::Integer(42)))); /// ``` pub fn run_with_context(source: &str, context: Context) -> Result, DustError> { let abstract_syntax_tree = parse(source)?; let mut analyzer = Analyzer::new(&abstract_syntax_tree, &context); analyzer .analyze() .map_err(|analysis_error| DustError::Analysis { analysis_error, source, })?; let mut vm = Vm::new(abstract_syntax_tree, context); vm.run().map_err(|runtime_error| DustError::Runtime { runtime_error, source, }) } /// Dust virtual machine. /// /// **Warning**: Do not run an AbstractSyntaxTree that has not been analyzed *with the same /// context*. Use the `run` or `run_with_context` functions to make sure the program is analyzed /// before running it. /// /// See the `run_with_context` function for an example of how to use the Analyzer and the VM. pub struct Vm { abstract_tree: AbstractSyntaxTree, context: Context, } impl Vm { pub fn new(abstract_tree: AbstractSyntaxTree, context: Context) -> Self { Self { abstract_tree, context, } } pub fn run(&mut self) -> Result, RuntimeError> { let mut previous_value = None; while let Some(statement) = self.abstract_tree.statements.pop_front() { previous_value = self.run_statement(statement, true)?; } Ok(previous_value) } fn run_statement( &self, statement: Statement, collect_garbage: bool, ) -> Result, RuntimeError> { log::debug!("Running statement: {}", statement); let position = statement.position(); let result = match statement { Statement::Expression(expression) => self .run_expression(expression, collect_garbage) .map(|evaluation| evaluation.value()), Statement::ExpressionNullified(expression) => { self.run_expression(expression.inner, collect_garbage)?; Ok(None) } Statement::Let(let_statement) => { self.run_let_statement(let_statement.inner, collect_garbage)?; Ok(None) } Statement::StructDefinition(struct_definition) => { let (name, struct_type) = match struct_definition.inner { StructDefinition::Unit { name } => { (name.inner.clone(), StructType::Unit { name: name.inner }) } StructDefinition::Tuple { name, items } => { let fields = items.into_iter().map(|item| item.inner).collect(); ( name.inner.clone(), StructType::Tuple { name: name.inner, fields, }, ) } StructDefinition::Fields { name, fields } => { let fields = fields .into_iter() .map(|(identifier, r#type)| (identifier.inner, r#type.inner)) .collect(); ( name.inner.clone(), StructType::Fields { name: name.inner, fields, }, ) } }; let constructor = struct_type.constructor(); self.context.set_constructor(name, constructor); Ok(None) } }; if collect_garbage { // self.context.collect_garbage(position); } result.map_err(|error| RuntimeError::Statement { error: Box::new(error), position, }) } fn run_let_statement( &self, let_statement: LetStatement, collect_garbage: bool, ) -> Result<(), RuntimeError> { match let_statement { LetStatement::Let { identifier, value } => { let value_position = value.position(); let value = self .run_expression(value, collect_garbage)? .expect_value(value_position)?; self.context.set_variable_value(identifier.inner, value); Ok(()) } LetStatement::LetMut { identifier, value } => { let value_position = value.position(); let mutable_value = self .run_expression(value, collect_garbage)? .expect_value(value_position)? .into_mutable(); self.context .set_variable_value(identifier.inner, mutable_value); Ok(()) } LetStatement::LetType { .. } => todo!(), LetStatement::LetMutType { .. } => todo!(), } } fn run_expression( &self, expression: Expression, collect_garbage: bool, ) -> Result { log::debug!("Running expression: {}", expression); let position = expression.position(); let evaluation_result = match expression { Expression::Block(Node { inner, .. }) => self.run_block(*inner, collect_garbage), Expression::Call(call) => self.run_call(*call.inner, collect_garbage), Expression::FieldAccess(field_access) => { self.run_field_access(*field_access.inner, collect_garbage) } Expression::Grouped(expression) => { self.run_expression(*expression.inner, collect_garbage) } Expression::Identifier(identifier) => { log::debug!("Running identifier: {}", identifier.inner); let get_data = self.context.get_data(&identifier.inner); if let Some(ContextData::VariableValue(value)) = get_data { return Ok(Evaluation::Return(Some(value))); } if let Some(ContextData::Constructor(constructor)) = get_data { if let Constructor::Unit(unit_constructor) = constructor { return Ok(Evaluation::Return(Some(unit_constructor.construct()))); } return Ok(Evaluation::Constructor(constructor)); } Err(RuntimeError::UndefinedValue { identifier: identifier.inner, position, }) } Expression::If(if_expression) => self.run_if(*if_expression.inner, collect_garbage), Expression::List(list_expression) => { self.run_list(*list_expression.inner, collect_garbage) } Expression::ListIndex(list_index) => { self.run_list_index(*list_index.inner, collect_garbage) } Expression::Literal(literal) => self.run_literal(*literal.inner), Expression::Loop(loop_expression) => self.run_loop(*loop_expression.inner), Expression::Map(map_expression) => self.run_map(*map_expression.inner, collect_garbage), Expression::Operator(operator_expression) => { self.run_operator(*operator_expression.inner, collect_garbage) } Expression::Range(range_expression) => { self.run_range(*range_expression.inner, collect_garbage) } Expression::Struct(struct_expression) => { self.run_struct(*struct_expression.inner, collect_garbage) } Expression::TupleAccess(_) => todo!(), }; evaluation_result.map_err(|error| RuntimeError::Expression { error: Box::new(error), position, }) } fn run_struct( &self, struct_expression: StructExpression, collect_garbage: bool, ) -> Result { log::debug!("Running struct expression: {struct_expression}"); let StructExpression::Fields { name, fields } = struct_expression; let position = name.position; let constructor = self.context.get_constructor(&name.inner); if let Some(constructor) = constructor { if let Constructor::Fields(fields_constructor) = constructor { let mut arguments = HashMap::with_capacity(fields.len()); for (identifier, expression) in fields { let position = expression.position(); let value = self .run_expression(expression, collect_garbage)? .expect_value(position)?; arguments.insert(identifier.inner, value); } Ok(Evaluation::Return(Some( fields_constructor.construct(arguments), ))) } else { Err(RuntimeError::ExpectedFieldsConstructor { position }) } } else { Err(RuntimeError::ExpectedConstructor { position }) } } fn run_range( &self, range: RangeExpression, collect_garbage: bool, ) -> Result { match range { RangeExpression::Exclusive { start, end } => { let start_position = start.position(); let start = self .run_expression(start, collect_garbage)? .expect_value(start_position)?; let end_position = end.position(); let end = self .run_expression(end, collect_garbage)? .expect_value(end_position)?; match (start, end) { (Value::Byte(start), Value::Byte(end)) => { Ok(Evaluation::Return(Some(Value::byte_range(start, end)))) } (Value::Character(start), Value::Character(end)) => { Ok(Evaluation::Return(Some(Value::character_range(start, end)))) } (Value::Float(start), Value::Float(end)) => { Ok(Evaluation::Return(Some(Value::float_range(start, end)))) } (Value::Integer(start), Value::Integer(end)) => { Ok(Evaluation::Return(Some(Value::integer_range(start, end)))) } _ => Err(RuntimeError::InvalidRange { start_position, end_position, }), } } RangeExpression::Inclusive { start, end } => { let start_position = start.position(); let start = self .run_expression(start, collect_garbage)? .expect_value(start_position)?; let end_position = end.position(); let end = self .run_expression(end, collect_garbage)? .expect_value(end_position)?; match (start, end) { (Value::Byte(start), Value::Byte(end)) => Ok(Evaluation::Return(Some( Value::byte_range_inclusive(start, end), ))), (Value::Character(start), Value::Character(end)) => Ok(Evaluation::Return( Some(Value::character_range_inclusive(start, end)), )), (Value::Float(start), Value::Float(end)) => Ok(Evaluation::Return(Some( Value::float_range_inclusive(start, end), ))), (Value::Integer(start), Value::Integer(end)) => Ok(Evaluation::Return(Some( Value::integer_range_inclusive(start, end), ))), _ => Err(RuntimeError::InvalidRange { start_position, end_position, }), } } } } fn run_map( &self, map: MapExpression, collect_garbage: bool, ) -> Result { let MapExpression { pairs } = map; let mut map = HashMap::new(); for (identifier, expression) in pairs { let expression_position = expression.position(); let value = self .run_expression(expression, collect_garbage)? .expect_value(expression_position)?; map.insert(identifier.inner, value); } Ok(Evaluation::Return(Some(Value::Map(map)))) } fn run_operator( &self, operator: OperatorExpression, collect_garbage: bool, ) -> Result { match operator { OperatorExpression::Assignment { assignee, value } => { let assignee_position = assignee.position(); let assignee = self .run_expression(assignee, collect_garbage)? .expect_value(assignee_position)?; let value_position = value.position(); let value = self .run_expression(value, collect_garbage)? .expect_value(value_position)?; assignee .mutate(value) .map_err(|error| RuntimeError::ValueError { error, left_position: assignee_position, right_position: value_position, })?; Ok(Evaluation::Return(None)) } OperatorExpression::Comparison { left, operator, right, } => { let left_position = left.position(); let left_value = self .run_expression(left, collect_garbage)? .expect_value(left_position)?; let right_position = right.position(); let right_value = self .run_expression(right, collect_garbage)? .expect_value(right_position)?; let outcome = match operator.inner { ComparisonOperator::Equal => left_value.equal(&right_value), ComparisonOperator::NotEqual => left_value.not_equal(&right_value), ComparisonOperator::GreaterThan => left_value .greater_than(&right_value) .map_err(|error| RuntimeError::ValueError { error, left_position, right_position, })?, ComparisonOperator::GreaterThanOrEqual => left_value .greater_than_or_equal(&right_value) .map_err(|error| RuntimeError::ValueError { error, left_position, right_position, })?, ComparisonOperator::LessThan => left_value .less_than(&right_value) .map_err(|error| RuntimeError::ValueError { error, left_position, right_position, })?, ComparisonOperator::LessThanOrEqual => left_value .less_than_or_equal(&right_value) .map_err(|error| RuntimeError::ValueError { error, left_position, right_position, })?, }; Ok(Evaluation::Return(Some(outcome))) } OperatorExpression::CompoundAssignment { assignee, operator, modifier, } => { let assignee_position = assignee.position(); let assignee = self .run_expression(assignee, collect_garbage)? .expect_value(assignee_position)?; let modifier_position = modifier.position(); let modifier = self .run_expression(modifier, collect_garbage)? .expect_value(modifier_position)?; match operator.inner { MathOperator::Add => assignee.add_assign(&modifier), MathOperator::Subtract => assignee.subtract_assign(&modifier), MathOperator::Multiply => assignee.multiply_assign(&modifier), MathOperator::Divide => assignee.divide_assign(&modifier), MathOperator::Modulo => assignee.modulo_assign(&modifier), } .map_err(|error| RuntimeError::ValueError { error, left_position: assignee_position, right_position: modifier_position, })?; Ok(Evaluation::Return(None)) } OperatorExpression::ErrorPropagation(_) => todo!(), OperatorExpression::Negation(expression) => { let position = expression.position(); let value = self .run_expression(expression, collect_garbage)? .expect_value(position)?; let integer = value .as_integer() .ok_or(RuntimeError::ExpectedBoolean { position })?; let negated = Value::Integer(-integer); Ok(Evaluation::Return(Some(negated))) } OperatorExpression::Not(expression) => { let position = expression.position(); let value = self .run_expression(expression, collect_garbage)? .expect_value(position)?; let boolean = value .as_boolean() .ok_or(RuntimeError::ExpectedBoolean { position })?; let not = Value::Boolean(!boolean); Ok(Evaluation::Return(Some(not))) } OperatorExpression::Math { left, operator, right, } => { let left_position = left.position(); let left_value = self .run_expression(left, collect_garbage)? .expect_value(left_position)?; let right_position = right.position(); let right_value = self .run_expression(right, collect_garbage)? .expect_value(right_position)?; let outcome = match operator.inner { MathOperator::Add => left_value.add(&right_value), MathOperator::Subtract => left_value.subtract(&right_value), MathOperator::Multiply => left_value.multiply(&right_value), MathOperator::Divide => left_value.divide(&right_value), MathOperator::Modulo => left_value.modulo(&right_value), } .map_err(|value_error| RuntimeError::ValueError { error: value_error, left_position, right_position, })?; Ok(Evaluation::Return(Some(outcome))) } OperatorExpression::Logic { left, operator, right, } => { let left_position = left.position(); let left_value = self .run_expression(left, collect_garbage)? .expect_value(left_position)?; let right_position = right.position(); let right_value = self .run_expression(right, collect_garbage)? .expect_value(right_position)?; let outcome = match operator.inner { LogicOperator::And => left_value.and(&right_value), LogicOperator::Or => left_value.or(&right_value), } .map_err(|value_error| RuntimeError::ValueError { error: value_error, left_position, right_position, })?; Ok(Evaluation::Return(Some(outcome))) } } } fn run_loop(&self, loop_expression: LoopExpression) -> Result { match loop_expression { LoopExpression::Infinite { block } => loop { self.run_block(block.inner.clone(), false)?; }, LoopExpression::While { condition, block } => { while self .run_expression(condition.clone(), false)? .expect_value(condition.position())? .as_boolean() .ok_or_else(|| RuntimeError::ExpectedBoolean { position: condition.position(), })? { self.run_block(block.inner.clone(), false)?; } Ok(Evaluation::Return(None)) } LoopExpression::For { .. } => todo!(), } } fn run_literal(&self, literal: LiteralExpression) -> Result { let value = match literal { LiteralExpression::BuiltInFunction(built_in_function) => { Value::Function(Function::BuiltIn(built_in_function)) } LiteralExpression::String(string) => Value::String(string), LiteralExpression::Primitive(primitive_expression) => match primitive_expression { PrimitiveValueExpression::Boolean(boolean) => Value::Boolean(boolean), PrimitiveValueExpression::Character(character) => Value::Character(character), PrimitiveValueExpression::Integer(integer) => Value::Integer(integer), PrimitiveValueExpression::Float(float) => Value::Float(float), }, }; Ok(Evaluation::Return(Some(value))) } fn run_list_index( &self, list_index: ListIndexExpression, collect_garbage: bool, ) -> Result { let ListIndexExpression { list, index } = list_index; let list_position = list.position(); let list_value = self .run_expression(list, collect_garbage)? .expect_value(list_position)?; let index_position = index.position(); let index_value = self .run_expression(index, collect_garbage)? .expect_value(index_position)?; let get_index = list_value .get_index(index_value) .map_err(|error| RuntimeError::ValueError { error, left_position: list_position, right_position: index_position, })?; Ok(Evaluation::Return(get_index)) } fn run_call( &self, call_expression: CallExpression, collect_garbage: bool, ) -> Result { log::debug!("Running call expression: {call_expression}"); let CallExpression { invoker, arguments } = call_expression; let invoker_position = invoker.position(); let run_invoker = self.run_expression(invoker, collect_garbage)?; match run_invoker { Evaluation::Constructor(constructor) => match constructor { Constructor::Unit(unit_constructor) => { Ok(Evaluation::Return(Some(unit_constructor.construct()))) } Constructor::Tuple(tuple_constructor) => { let mut fields = Vec::new(); for argument in arguments { let position = argument.position(); if let Some(value) = self.run_expression(argument, collect_garbage)?.value() { fields.push(value); } else { return Err(RuntimeError::ExpectedValue { position }); } } let tuple = tuple_constructor.construct(fields); Ok(Evaluation::Return(Some(tuple))) } Constructor::Fields(_) => { todo!("Return an error") } }, Evaluation::Return(Some(value)) => { let function = if let Value::Function(function) = value { function } else { return Err(RuntimeError::ExpectedFunction { actual: value.to_owned(), position: invoker_position, }); }; let mut value_arguments = Vec::new(); for argument in arguments { let position = argument.position(); let value = self .run_expression(argument, collect_garbage)? .expect_value(position)?; value_arguments.push(value); } let context = Context::new(); function .call(None, Some(value_arguments), &context) .map(Evaluation::Return) } _ => Err(RuntimeError::ExpectedValueOrConstructor { position: invoker_position, }), } } fn run_field_access( &self, field_access: FieldAccessExpression, collect_garbage: bool, ) -> Result { let FieldAccessExpression { container, field } = field_access; let container_position = container.position(); let container_value = if let Some(value) = self.run_expression(container, collect_garbage)?.value() { value } else { return Err(RuntimeError::ExpectedValue { position: container_position, }); }; Ok(Evaluation::Return(container_value.get_field(&field.inner))) } fn run_list( &self, list_expression: ListExpression, collect_garbage: bool, ) -> Result { match list_expression { ListExpression::AutoFill { repeat_operand, length_operand, } => { let position = length_operand.position(); let length = self .run_expression(length_operand, collect_garbage)? .expect_value(position)? .as_integer() .ok_or(RuntimeError::ExpectedInteger { position })?; let position = repeat_operand.position(); let value = self .run_expression(repeat_operand, collect_garbage)? .expect_value(position)?; Ok(Evaluation::Return(Some(Value::List(vec![ value; length as usize ])))) } ListExpression::Ordered(expressions) => { let mut values = Vec::new(); for expression in expressions { let position = expression.position(); let value = self .run_expression(expression, collect_garbage)? .expect_value(position)?; values.push(value); } Ok(Evaluation::Return(Some(Value::List(values)))) } } } fn run_block( &self, block: BlockExpression, collect_garbage: bool, ) -> Result { match block { BlockExpression::Async(statements) => { let final_result = Arc::new(Mutex::new(None)); let statements_length = statements.len(); let error_option = statements .into_par_iter() .enumerate() .find_map_any(|(i, statement)| { let evaluation_result = self.run_statement(statement, false); match evaluation_result { Ok(evaluation) => { if i == statements_length - 1 { let mut final_result = final_result.lock().unwrap(); *final_result = evaluation; } None } Err(error) => Some(error), } }); if let Some(error) = error_option { Err(error) } else { Ok(Evaluation::Return(final_result.lock().unwrap().clone())) } } BlockExpression::Sync(statements) => { let mut previous_value = None; for statement in statements { let position = statement.position(); previous_value = self.run_statement(statement, collect_garbage)?; if collect_garbage { // self.context.collect_garbage(position); } } Ok(Evaluation::Return(previous_value)) } } } fn run_if( &self, if_expression: IfExpression, collect_garbage: bool, ) -> Result { match if_expression { IfExpression::If { condition, if_block, } => { let position = condition.position(); let boolean = self .run_expression(condition, collect_garbage)? .expect_value(position)? .as_boolean() .ok_or(RuntimeError::ExpectedBoolean { position })?; if boolean { self.run_block(if_block.inner, collect_garbage)?; } Ok(Evaluation::Return(None)) } IfExpression::IfElse { condition, if_block, r#else, } => { let position = condition.position(); let boolean = self .run_expression(condition, collect_garbage)? .expect_value(position)? .as_boolean() .ok_or(RuntimeError::ExpectedBoolean { position })?; if boolean { self.run_block(if_block.inner, collect_garbage)?; } match r#else { ElseExpression::If(if_expression) => { self.run_if(*if_expression.inner, collect_garbage) } ElseExpression::Block(block) => self.run_block(block.inner, collect_garbage), } } } } } enum Evaluation { Break, Constructor(Constructor), Return(Option), } impl Evaluation { pub fn value(self) -> Option { match self { Evaluation::Return(value_option) => value_option, _ => None, } } pub fn expect_value(self, position: Span) -> Result { if let Evaluation::Return(Some(value)) = self { Ok(value) } else { Err(RuntimeError::ExpectedValue { position }) } } } #[derive(Clone, Debug, PartialEq)] pub enum RuntimeError { ParseError(ParseError), Expression { error: Box, position: Span, }, Statement { error: Box, position: Span, }, ValueError { error: ValueError, left_position: Span, right_position: Span, }, // Anaylsis Failures // These should be prevented by running the analyzer before the VM BuiltInFunctionError { error: BuiltInFunctionError, }, EnumVariantNotFound { identifier: Identifier, position: Span, }, ExpectedBoolean { position: Span, }, ExpectedConstructor { position: Span, }, ExpectedFieldsConstructor { position: Span, }, ExpectedIdentifier { position: Span, }, ExpectedIntegerOrRange { position: Span, }, ExpectedIdentifierOrString { position: Span, }, ExpectedInteger { position: Span, }, ExpectedNumber { position: Span, }, ExpectedMap { position: Span, }, ExpectedType { expected: Type, actual: Type, position: Span, }, ExpectedFunction { actual: Value, position: Span, }, ExpectedList { position: Span, }, ExpectedValue { position: Span, }, ExpectedValueOrConstructor { position: Span, }, InvalidRange { start_position: Span, end_position: Span, }, UndefinedType { identifier: Identifier, position: Span, }, UndefinedValue { identifier: Identifier, position: Span, }, UndefinedProperty { value: Value, value_position: Span, property: Identifier, property_position: Span, }, } impl RuntimeError { pub fn position(&self) -> Option { let position = match self { Self::BuiltInFunctionError { .. } => return None, Self::ParseError(parse_error) => parse_error.position(), Self::Expression { position, .. } => *position, Self::Statement { position, .. } => *position, Self::ValueError { left_position, right_position, .. } => (left_position.0, right_position.1), Self::EnumVariantNotFound { position, .. } => *position, Self::ExpectedBoolean { position } => *position, Self::ExpectedConstructor { position, .. } => *position, Self::ExpectedFieldsConstructor { position } => *position, Self::ExpectedFunction { position, .. } => *position, Self::ExpectedIdentifier { position } => *position, Self::ExpectedIdentifierOrString { position } => *position, Self::ExpectedInteger { position } => *position, Self::ExpectedIntegerOrRange { position } => *position, Self::ExpectedList { position } => *position, Self::ExpectedMap { position } => *position, Self::ExpectedNumber { position } => *position, Self::ExpectedType { position, .. } => *position, Self::ExpectedValue { position } => *position, Self::InvalidRange { start_position, end_position, .. } => (start_position.0, end_position.1), Self::UndefinedType { position, .. } => *position, Self::UndefinedValue { position, .. } => *position, Self::ExpectedValueOrConstructor { position } => *position, Self::UndefinedProperty { property_position, .. } => *property_position, }; Some(position) } } impl From for RuntimeError { fn from(error: ParseError) -> Self { Self::ParseError(error) } } impl Display for RuntimeError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { Self::ParseError(parse_error) => write!(f, "{}", parse_error), Self::Expression { error, position } => { write!( f, "Error while running expression at {:?}: {}", position, error ) } Self::Statement { error, position } => { write!( f, "Error while running statement at {:?}: {}", position, error ) } Self::ValueError { error, left_position, right_position, } => { write!( f, "Value error with values at positions: {:?} and {:?} {}", left_position, right_position, error ) } Self::BuiltInFunctionError { error, .. } => { write!(f, "{}", error) } Self::EnumVariantNotFound { identifier, position, } => { write!( f, "Enum variant not found: {} at position: {:?}", identifier, position ) } Self::ExpectedBoolean { position } => { write!(f, "Expected a boolean at position: {:?}", position) } Self::ExpectedConstructor { position } => { write!(f, "Expected a constructor at position: {:?}", position) } Self::ExpectedFieldsConstructor { position } => { write!( f, "Expected a fields constructor at position: {:?}", position ) } Self::ExpectedFunction { actual, position } => { write!( f, "Expected a function, but got {} at position: {:?}", actual, position ) } Self::ExpectedIdentifier { position } => { write!(f, "Expected an identifier at position: {:?}", position) } Self::ExpectedIdentifierOrString { position } => { write!( f, "Expected an identifier or string at position: {:?}", position ) } Self::ExpectedIntegerOrRange { position } => { write!( f, "Expected an identifier, integer, or range at position: {:?}", position ) } Self::ExpectedInteger { position } => { write!(f, "Expected an integer at position: {:?}", position) } Self::ExpectedList { position } => { write!(f, "Expected a list at position: {:?}", position) } Self::ExpectedType { expected, actual, position, } => { write!( f, "Expected type {}, but got {} at position: {:?}", expected, actual, position ) } Self::ExpectedMap { position } => { write!(f, "Expected a map at position: {:?}", position) } Self::ExpectedNumber { position } => { write!( f, "Expected an integer or float at position: {:?}", position ) } Self::ExpectedValue { position } => { write!(f, "Expected a value at position: {:?}", position) } Self::ExpectedValueOrConstructor { position } => { write!( f, "Expected a value or constructor at position: {:?}", position ) } Self::InvalidRange { start_position, end_position, } => { write!( f, "Invalid range with start position: {:?} and end position: {:?}", start_position, end_position ) } Self::UndefinedValue { identifier, position, } => { write!( f, "Undefined value {} at position: {:?}", identifier, position ) } Self::UndefinedProperty { value, property, .. } => { write!(f, "Value {} does not have the property {}", value, property) } Self::UndefinedType { identifier, position, } => { write!( f, "Undefined type {} at position: {:?}", identifier, position ) } } } } #[cfg(test)] mod tests { use std::collections::HashMap; use crate::Struct; use super::*; #[test] fn string_index() { let input = "'foo'[0]"; assert_eq!(run(input), Ok(Some(Value::Character('f')))); } #[test] fn map_expression() { let input = "let x = map { foo = 42, bar = 4.2 }; x"; assert_eq!( run(input), Ok(Some(Value::map([ (Identifier::new("foo"), Value::Integer(42)), (Identifier::new("bar"), Value::Float(4.2)) ]))) ); } #[test] fn async_block() { let input = "let mut x = 1; async { x += 1; x -= 1; } x"; assert_eq!(run(input), Ok(Some(Value::mutable(Value::Integer(1))))); } #[test] fn define_and_instantiate_fields_struct() { let input = "struct Foo { bar: int, baz: float } Foo { bar: 42, baz: 4.0 }"; assert_eq!( run(input), Ok(Some(Value::Struct(Struct::Fields { name: Identifier::new("Foo"), fields: HashMap::from([ (Identifier::new("bar"), Value::Integer(42)), (Identifier::new("baz"), Value::Float(4.0)) ]) }))) ); } #[test] fn assign_tuple_struct_variable() { let input = " struct Foo(int); let x = Foo(42); x "; assert_eq!( run(input), Ok(Some(Value::Struct(Struct::Tuple { name: Identifier::new("Foo"), fields: vec![Value::Integer(42)] }))) ) } #[test] fn define_and_instantiate_tuple_struct() { let input = "struct Foo(int); Foo(42)"; assert_eq!( run(input), Ok(Some(Value::Struct(Struct::Tuple { name: Identifier::new("Foo"), fields: vec![Value::Integer(42)] }))) ); } #[test] fn assign_unit_struct_variable() { let input = " struct Foo; let x = Foo; x "; assert_eq!( run(input), Ok(Some(Value::Struct(Struct::Unit { name: Identifier::new("Foo") }))) ) } #[test] fn define_and_instantiate_unit_struct() { let input = "struct Foo; Foo"; assert_eq!( run(input), Ok(Some(Value::Struct(Struct::Unit { name: Identifier::new("Foo") }))) ); } #[test] fn list_index_nested() { let input = "[[1, 2], [42, 4], [5, 6]][1][0]"; assert_eq!(run(input), Ok(Some(Value::Integer(42)))); } #[test] fn list_index_range() { let input = "[1, 2, 3, 4, 5][1..3]"; assert_eq!( run(input), Ok(Some(Value::List(vec![ Value::Integer(2), Value::Integer(3) ]))) ); } #[test] fn range() { let input = "1..5"; assert_eq!(run(input), Ok(Some(Value::integer_range(1, 5)))); } #[test] fn negate_expression() { let input = "let x = -42; -x"; assert_eq!(run(input), Ok(Some(Value::Integer(42)))); } #[test] fn not_expression() { let input = "!(1 == 2 || 3 == 4 || 5 == 6)"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn list_index() { let input = "[1, 42, 3][1]"; assert_eq!(run(input), Ok(Some(Value::Integer(42)))); } #[test] fn map_property_access() { let input = "map { a = 42 }.a"; assert_eq!(run(input), Ok(Some(Value::Integer(42)))); } #[test] fn built_in_function_dot_notation() { let input = "42.to_string()"; assert_eq!(run(input), Ok(Some(Value::string("42")))); } #[test] fn to_string() { let input = "to_string(42)"; assert_eq!(run(input), Ok(Some(Value::string("42")))); } #[test] fn r#if() { let input = "if true { 1 }"; assert_eq!(run(input), Ok(None)); } #[test] fn if_else() { let input = "let x = if false { 1 } else { 2 }; x"; assert_eq!(run(input), Ok(Some(Value::Integer(2)))); } #[test] fn if_else_if() { let input = "if false { 1 } else if true { 2 }"; assert_eq!(run(input), Ok(None)); } #[test] fn if_else_if_else() { let input = "if false { 1 } else if false { 2 } else { 3 }"; assert_eq!(run(input), Ok(Some(Value::Integer(3)))); } #[test] fn while_loop() { let input = "let mut x = 0; while x < 5 { x += 1 } x"; assert_eq!(run(input), Ok(Some(Value::mutable_from(5)))); } #[test] fn subtract_assign() { let input = "let mut x = 1; x -= 1; x"; assert_eq!(run(input), Ok(Some(Value::mutable_from(0)))); } #[test] fn add_assign() { let input = "let mut x = 1; x += 1; x"; assert_eq!(run(input), Ok(Some(Value::mutable_from(2)))); } #[test] fn and() { let input = "true && true"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn or() { let input = "true || false"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn integer_equal() { let input = "42 == 42"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn modulo() { let input = "42 % 2"; assert_eq!(run(input), Ok(Some(Value::Integer(0)))); } #[test] fn divide() { let input = "42 / 2"; assert_eq!(run(input), Ok(Some(Value::Integer(21)))); } #[test] fn less_than() { let input = "2 < 3"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn less_than_or_equal() { let input = "42 <= 42"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn greater_than() { let input = "2 > 3"; assert_eq!(run(input), Ok(Some(Value::Boolean(false)))); } #[test] fn greater_than_or_equal() { let input = "42 >= 42"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn integer_saturating_add() { let input = "9223372036854775807 + 1"; assert_eq!(run(input), Ok(Some(Value::Integer(i64::MAX)))); } #[test] fn integer_saturating_sub() { let input = "-9223372036854775808 - 1"; assert_eq!(run(input), Ok(Some(Value::Integer(i64::MIN)))); } #[test] fn multiply() { let input = "2 * 3"; assert_eq!(run(input), Ok(Some(Value::Integer(6)))); } #[test] fn boolean() { let input = "true"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn is_even() { let input = "is_even(42)"; assert_eq!(run(input), Ok(Some(Value::Boolean(true)))); } #[test] fn is_odd() { let input = "is_odd(42)"; assert_eq!(run(input), Ok(Some(Value::Boolean(false)))); } #[test] fn length() { let input = "length([1, 2, 3])"; assert_eq!(run(input), Ok(Some(Value::Integer(3)))); } #[test] fn add() { let input = "1 + 2"; assert_eq!(run(input), Ok(Some(Value::Integer(3)))); } #[test] fn add_multiple() { let input = "1 + 2 + 3"; assert_eq!(run(input), Ok(Some(Value::Integer(6)))); } }