use std::{ fmt::{self, Display, Formatter}, mem::replace, num::{ParseFloatError, ParseIntError}, }; use colored::Colorize; use crate::{ AnnotatedError, Chunk, ChunkError, DustError, Identifier, Instruction, LexError, Lexer, Operation, Span, Token, TokenKind, TokenOwned, Value, }; pub fn parse(source: &str) -> Result { let lexer = Lexer::new(source); let mut parser = Parser::new(lexer).map_err(|error| DustError::Parse { error, source })?; while !parser.is_eof() { parser .parse_statement(true) .map_err(|error| DustError::Parse { error, source })?; } Ok(parser.chunk) } #[derive(Debug)] pub struct Parser<'src> { chunk: Chunk, lexer: Lexer<'src>, current_register: u8, current_token: Token<'src>, current_position: Span, previous_token: Token<'src>, previous_position: Span, } impl<'src> Parser<'src> { pub fn new(mut lexer: Lexer<'src>) -> Result { let (current_token, current_position) = lexer.next_token()?; log::info!( "{} at {}", current_token.to_string().bold(), current_position.to_string() ); Ok(Parser { lexer, chunk: Chunk::new(), current_register: 0, current_token, current_position, previous_token: Token::Eof, previous_position: Span(0, 0), }) } pub fn take_chunk(self) -> Chunk { self.chunk } fn is_eof(&self) -> bool { matches!(self.current_token, Token::Eof) } fn increment_register(&mut self) -> Result<(), ParseError> { let current = self.current_register; if current == u8::MAX { Err(ParseError::RegisterOverflow { position: self.current_position, }) } else { self.current_register += 1; Ok(()) } } fn decrement_register(&mut self) -> Result<(), ParseError> { let current = self.current_register; if current == 0 { Err(ParseError::RegisterUnderflow { position: self.current_position, }) } else { self.current_register -= 1; Ok(()) } } fn advance(&mut self) -> Result<(), ParseError> { if self.is_eof() { return Ok(()); } let (new_token, position) = self.lexer.next_token()?; log::info!( "{} at {}", new_token.to_string().bold(), position.to_string() ); self.previous_token = replace(&mut self.current_token, new_token); self.previous_position = replace(&mut self.current_position, position); Ok(()) } fn allow(&mut self, allowed: TokenKind) -> Result { if self.current_token.kind() == allowed { self.advance()?; Ok(true) } else { Ok(false) } } fn expect(&mut self, expected: TokenKind) -> Result<(), ParseError> { if self.current_token.kind() == expected { self.advance() } else { Err(ParseError::ExpectedToken { expected, found: self.current_token.to_owned(), position: self.current_position, }) } } fn emit_instruction(&mut self, instruction: Instruction, position: Span) { self.chunk.push_instruction(instruction, position); } fn emit_constant(&mut self, value: Value) -> Result<(), ParseError> { let position = self.previous_position; let constant_index = self.chunk.push_constant(value, position)?; self.emit_instruction( Instruction::load_constant(self.current_register, constant_index, false), position, ); Ok(()) } fn parse_boolean( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { let boolean_text = if let Token::Boolean(text) = self.current_token { text } else { return Err(ParseError::ExpectedToken { expected: TokenKind::Boolean, found: self.current_token.to_owned(), position: self.current_position, }); }; let position = self.current_position; let boolean = boolean_text.parse::().unwrap(); self.advance()?; self.emit_instruction( Instruction::load_boolean(self.current_register, boolean, false), position, ); Ok(()) } fn parse_byte( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if let Token::Byte(text) = self.current_token { self.advance()?; let byte = u8::from_str_radix(&text[2..], 16).map_err(|error| ParseError::ParseIntError { error, position: self.previous_position, })?; let value = Value::byte(byte); self.emit_constant(value)?; } Ok(()) } fn parse_character( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if let Token::Character(character) = self.current_token { self.advance()?; let value = Value::character(character); self.emit_constant(value)?; } Ok(()) } fn parse_float( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if let Token::Float(text) = self.current_token { self.advance()?; let float = text .parse::() .map_err(|error| ParseError::ParseFloatError { error, position: self.previous_position, })?; let value = Value::float(float); self.emit_constant(value)?; } Ok(()) } fn parse_integer( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if let Token::Integer(text) = self.current_token { self.advance()?; let integer = text .parse::() .map_err(|error| ParseError::ParseIntError { error, position: self.previous_position, })?; let value = Value::integer(integer); self.emit_constant(value)?; } Ok(()) } fn parse_string( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if let Token::String(text) = self.current_token { self.advance()?; let value = Value::string(text); self.emit_constant(value)?; } Ok(()) } fn parse_grouped( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { self.allow(TokenKind::LeftParenthesis)?; self.parse(Precedence::Assignment)?; // Do not allow assignment self.expect(TokenKind::RightParenthesis) } fn parse_unary( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { let operator = self.current_token; let operator_position = self.current_position; self.advance()?; self.parse(Precedence::Assignment)?; // Do not allow assignment let (previous_instruction, previous_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back, is_constant, argument) = { match previous_instruction.operation() { Operation::GetLocal => (false, false, previous_instruction.a()), Operation::LoadConstant => (false, true, previous_instruction.a()), Operation::LoadBoolean => (true, false, previous_instruction.a()), Operation::Close => { return Err(ParseError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => (true, false, previous_instruction.a()), } }; if push_back { self.increment_register()?; } let mut instruction = match operator.kind() { TokenKind::Bang => Instruction::not(self.current_register, argument), TokenKind::Minus => Instruction::negate(self.current_register, argument), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[TokenKind::Bang, TokenKind::Minus], found: operator.to_owned(), position: operator_position, }) } }; if is_constant { instruction.set_b_is_constant(); } if push_back { self.emit_instruction(previous_instruction, previous_position); } self.emit_instruction(instruction, operator_position); Ok(()) } fn handle_binary_argument( &mut self, instruction: &Instruction, ) -> Result<(bool, bool, bool, u8), ParseError> { let mut push_back = false; let mut is_constant = false; let mut is_local = false; let argument = match instruction.operation() { Operation::GetLocal => { is_local = true; let local_index = instruction.b(); let local = self.chunk.get_local(local_index, self.current_position)?; if let Some(index) = local.register_index { index } else { instruction.a() } } Operation::LoadConstant => { is_constant = true; instruction.b() } Operation::LoadBoolean => instruction.a(), Operation::Close => { return Err(ParseError::ExpectedExpression { found: self.previous_token.to_owned(), position: self.previous_position, }); } _ => { push_back = true; instruction.a() } }; Ok((push_back, is_constant, is_local, argument)) } fn parse_math_binary(&mut self) -> Result<(), ParseError> { let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_left, left_is_constant, left_is_local, left) = self.handle_binary_argument(&left_instruction)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator.kind()); self.advance()?; self.parse(rule.precedence.increment())?; let register = if left_is_local { left } else { let current = self.current_register; self.increment_register()?; current }; let mut new_instruction = match operator.kind() { TokenKind::Plus => Instruction::add(register, left, 0), TokenKind::Minus => Instruction::subtract(register, left, 0), TokenKind::Star => Instruction::multiply(register, left, 0), TokenKind::Slash => Instruction::divide(register, left, 0), TokenKind::Percent => Instruction::modulo(register, left, 0), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[ TokenKind::Plus, TokenKind::Minus, TokenKind::Star, TokenKind::Slash, TokenKind::Percent, ], found: operator.to_owned(), position: operator_position, }) } }; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_right, right_is_constant, right_is_local, right) = self.handle_binary_argument(&right_instruction)?; new_instruction.set_c(right); if left_is_constant { new_instruction.set_b_is_constant(); } if right_is_constant { new_instruction.set_c_is_constant(); } let mut instructions = if !push_back_left && !push_back_right { self.emit_instruction(new_instruction, operator_position); return Ok(()); } else if push_back_right && !push_back_left { vec![ (right_instruction, right_position), (new_instruction, operator_position), ] } else if push_back_left && !push_back_right { vec![ (left_instruction, left_position), (new_instruction, operator_position), ] } else { vec![ (new_instruction, operator_position), (left_instruction, left_position), (right_instruction, right_position), ] }; while let Ok(operation) = self.chunk.get_last_operation() { if operation.is_math() { let (instruction, position) = self.chunk.pop_instruction(self.current_position)?; instructions.push((instruction, position)); } else { break; } } instructions.sort_by_key(|(instruction, _)| instruction.a()); for (instruction, position) in instructions { self.emit_instruction(instruction, position); } Ok(()) } fn parse_comparison_binary(&mut self) -> Result<(), ParseError> { let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_left, left_is_constant, _, left) = self.handle_binary_argument(&left_instruction)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator.kind()); let mut instruction = match self.current_token.kind() { TokenKind::DoubleEqual => Instruction::equal(true, left.saturating_sub(1), 0), TokenKind::BangEqual => Instruction::equal(false, left.saturating_sub(1), 0), TokenKind::Less => Instruction::less(true, left.saturating_sub(1), 0), TokenKind::LessEqual => Instruction::less_equal(true, left.saturating_sub(1), 0), TokenKind::Greater => Instruction::less_equal(false, left.saturating_sub(1), 0), TokenKind::GreaterEqual => Instruction::less(false, left.saturating_sub(1), 0), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[ TokenKind::DoubleEqual, TokenKind::BangEqual, TokenKind::Less, TokenKind::LessEqual, TokenKind::Greater, TokenKind::GreaterEqual, ], found: self.current_token.to_owned(), position: self.current_position, }) } }; self.advance()?; self.parse(rule.precedence.increment())?; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; let (push_back_right, right_is_constant, _, right) = self.handle_binary_argument(&right_instruction)?; instruction.set_c(right); if left_is_constant { instruction.set_b_is_constant(); } if right_is_constant { instruction.set_c_is_constant(); } if push_back_left { self.emit_instruction(left_instruction, left_position); } if push_back_right { self.emit_instruction(right_instruction, right_position); } self.emit_instruction(instruction, operator_position); self.emit_instruction(Instruction::jump(1, true), operator_position); Ok(()) } fn parse_logical_binary(&mut self) -> Result<(), ParseError> { let (left_instruction, left_position) = self.chunk.pop_instruction(self.current_position)?; let operator = self.current_token; let operator_position = self.current_position; let rule = ParseRule::from(&operator.kind()); let instruction = match operator.kind() { TokenKind::DoubleAmpersand => Instruction::test(left_instruction.a(), false), TokenKind::DoublePipe => Instruction::test(left_instruction.a(), true), _ => { return Err(ParseError::ExpectedTokenMultiple { expected: &[TokenKind::DoubleAmpersand, TokenKind::DoublePipe], found: operator.to_owned(), position: operator_position, }) } }; self.increment_register()?; self.advance()?; self.parse(rule.precedence.increment())?; let (right_instruction, right_position) = self.chunk.pop_instruction(self.current_position)?; self.emit_instruction(left_instruction, left_position); self.emit_instruction(instruction, operator_position); self.emit_instruction(Instruction::jump(1, true), operator_position); self.emit_instruction(right_instruction, right_position); Ok(()) } fn parse_variable( &mut self, allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { let token = self.current_token; let start_position = self.current_position; self.advance()?; let local_index = self.parse_identifier_from(token, start_position)?; if allow_assignment && self.allow(TokenKind::Equal)? { let is_mutable = self .chunk .get_local(local_index, start_position)? .is_mutable; if !is_mutable { return Err(ParseError::CannotMutateImmutableVariable { identifier: self.chunk.get_identifier(local_index).cloned().unwrap(), position: start_position, }); } self.parse(Precedence::Assignment)?; // Do not allow assignment let (mut previous_instruction, previous_position) = self.chunk.pop_instruction(self.current_position)?; if previous_instruction.operation().is_math() { let previous_register = self .chunk .get_local(local_index, start_position)? .register_index; if let Some(register_index) = previous_register { log::trace!("Condensing SET_LOCAL to binary expression"); previous_instruction.set_a(register_index); self.emit_instruction(previous_instruction, self.current_position); return Ok(()); } } self.emit_instruction(previous_instruction, previous_position); self.emit_instruction( Instruction::set_local(self.current_register, local_index), start_position, ); } else { self.emit_instruction( Instruction::get_local(self.current_register, local_index), self.previous_position, ); } Ok(()) } fn parse_identifier_from(&mut self, token: Token, position: Span) -> Result { if let Token::Identifier(text) = token { let identifier = Identifier::new(text); if let Ok(local_index) = self.chunk.get_local_index(&identifier, position) { Ok(local_index) } else { Err(ParseError::UndefinedVariable { identifier, position, }) } } else { Err(ParseError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position, }) } } fn parse_block( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { self.advance()?; self.chunk.begin_scope(); while !self.allow(TokenKind::RightCurlyBrace)? && !self.is_eof() { self.parse_statement(_allow_return)?; } self.chunk.end_scope(); Ok(()) } fn parse_list( &mut self, _allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { let start = self.current_position.0; self.advance()?; let start_register = self.current_register; while !self.allow(TokenKind::RightSquareBrace)? && !self.is_eof() { let next_register = self.current_register; self.parse(Precedence::Assignment)?; // Do not allow assignment if let Operation::LoadConstant = self.chunk.get_last_operation()? { self.increment_register()?; } if next_register != self.current_register.saturating_sub(1) { self.emit_instruction( Instruction::close(next_register, self.current_register.saturating_sub(1)), self.current_position, ); } self.allow(TokenKind::Comma)?; } let end_register = self.current_register - 1; let end = self.current_position.1; self.emit_instruction( Instruction::load_list(self.current_register, start_register, end_register), Span(start, end), ); Ok(()) } fn parse_if(&mut self, allow_assignment: bool, allow_return: bool) -> Result<(), ParseError> { let length = self.chunk.len(); self.advance()?; self.parse(Precedence::Assignment)?; // Do not allow assignment let is_explicit_boolean = matches!(self.previous_token, Token::Boolean(_)) && length == self.chunk.len() - 1; if is_explicit_boolean { self.emit_instruction( Instruction::test(self.current_register, false), self.current_position, ); } if let Token::LeftCurlyBrace = self.current_token { self.parse_block(allow_assignment, allow_return)?; } let last_operation = self.chunk.get_last_operation()?; if let (Operation::LoadConstant | Operation::LoadBoolean, Token::Else) = (last_operation, self.current_token) { let (mut load_constant, load_constant_position) = self.chunk.pop_instruction(self.current_position)?; load_constant.set_c_to_boolean(true); self.emit_instruction(load_constant, load_constant_position); } if self.allow(TokenKind::Else)? { if let Token::If = self.current_token { self.parse_if(allow_assignment, allow_return)?; } if let Token::LeftCurlyBrace = self.current_token { self.parse_block(allow_assignment, allow_return)?; } } Ok(()) } fn parse_while( &mut self, allow_assignment: bool, allow_return: bool, ) -> Result<(), ParseError> { self.advance()?; let jump_start = self.chunk.len(); self.parse(Precedence::Assignment)?; // Do not allow assignment self.parse_block(allow_assignment, allow_return)?; let jump_end = self.chunk.len(); let jump_distance = jump_end.abs_diff(jump_start) as u8; let jump_back = Instruction::jump(jump_distance, false); let jump_over_index = self.chunk.find_last_instruction(Operation::Jump); if let Some(index) = jump_over_index { let (_, jump_over_position) = self.chunk.remove_instruction(index); let jump_over = Instruction::jump(jump_distance - 1, true); self.chunk .insert_instruction(index, jump_over, jump_over_position); } self.chunk .insert_instruction(jump_end, jump_back, self.current_position); Ok(()) } fn parse_expression(&mut self) -> Result<(), ParseError> { self.parse(Precedence::None)?; if let [Some((jump, _)), Some((comparison, comparison_position))] = self.chunk.get_last_n_instructions() { if let (Operation::Jump, Operation::Equal | Operation::Less | Operation::LessEqual) = (jump.operation(), comparison.operation()) { let comparison_position = *comparison_position; self.emit_instruction( Instruction::load_boolean(self.current_register, true, true), comparison_position, ); self.emit_instruction( Instruction::load_boolean(self.current_register, false, false), comparison_position, ); } } Ok(()) } fn parse_statement(&mut self, allow_return: bool) -> Result<(), ParseError> { match self.current_token { Token::Let => { self.parse_let_statement(true, allow_return)?; self.allow(TokenKind::Semicolon)?; } Token::LeftCurlyBrace => { self.parse_block(true, true)?; self.allow(TokenKind::Semicolon)?; } _ => { self.parse_expression()?; if !self.allow(TokenKind::Semicolon)? && self.is_eof() { self.emit_instruction(Instruction::r#return(), self.current_position); } } }; Ok(()) } fn parse_let_statement( &mut self, allow_assignment: bool, _allow_return: bool, ) -> Result<(), ParseError> { if !allow_assignment { return Err(ParseError::ExpectedExpression { found: self.current_token.to_owned(), position: self.current_position, }); } self.allow(TokenKind::Let)?; let is_mutable = self.allow(TokenKind::Mut)?; let position = self.current_position; let identifier = if let Token::Identifier(text) = self.current_token { self.advance()?; Identifier::new(text) } else { return Err(ParseError::ExpectedToken { expected: TokenKind::Identifier, found: self.current_token.to_owned(), position: self.current_position, }); }; self.expect(TokenKind::Equal)?; self.parse_expression()?; self.increment_register()?; let (previous_instruction, previous_position) = self.chunk.get_last_instruction()?; let register = previous_instruction.a(); let local_index = self.chunk .declare_local(identifier, is_mutable, register, *previous_position)?; self.emit_instruction( Instruction::define_local(register, local_index, is_mutable), position, ); self.allow(TokenKind::Semicolon)?; Ok(()) } fn parse(&mut self, precedence: Precedence) -> Result<(), ParseError> { let allow_assignment = precedence < Precedence::Assignment; let allow_return = precedence == Precedence::None; if let Some(prefix_parser) = ParseRule::from(&self.current_token.kind()).prefix { log::debug!( "{} is {precedence} prefix", self.current_token.to_string().bold(), ); prefix_parser(self, allow_assignment, allow_return)?; } let mut infix_rule = ParseRule::from(&self.current_token.kind()); while precedence <= infix_rule.precedence { if let Some(infix_parser) = infix_rule.infix { log::debug!( "{} is {precedence} infix", self.current_token.to_string().bold(), ); if allow_assignment && self.current_token == Token::Equal { return Err(ParseError::InvalidAssignmentTarget { found: self.current_token.to_owned(), position: self.current_position, }); } infix_parser(self)?; } else { break; } infix_rule = ParseRule::from(&self.current_token.kind()); } Ok(()) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] pub enum Precedence { None, Assignment, Conditional, LogicalOr, LogicalAnd, Equality, Comparison, Term, Factor, Unary, Call, Primary, } impl Precedence { fn increment(&self) -> Self { match self { Precedence::None => Precedence::Assignment, Precedence::Assignment => Precedence::Conditional, Precedence::Conditional => Precedence::LogicalOr, Precedence::LogicalOr => Precedence::LogicalAnd, Precedence::LogicalAnd => Precedence::Equality, Precedence::Equality => Precedence::Comparison, Precedence::Comparison => Precedence::Term, Precedence::Term => Precedence::Factor, Precedence::Factor => Precedence::Unary, Precedence::Unary => Precedence::Call, Precedence::Call => Precedence::Primary, Precedence::Primary => Precedence::Primary, } } } impl Display for Precedence { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{:?}", self) } } type PrefixFunction<'a> = fn(&mut Parser<'a>, bool, bool) -> Result<(), ParseError>; type InfixFunction<'a> = fn(&mut Parser<'a>) -> Result<(), ParseError>; #[derive(Debug, Clone, Copy)] pub struct ParseRule<'a> { pub prefix: Option>, pub infix: Option>, pub precedence: Precedence, } impl From<&TokenKind> for ParseRule<'_> { fn from(token_kind: &TokenKind) -> Self { match token_kind { TokenKind::Async => todo!(), TokenKind::Bang => ParseRule { prefix: Some(Parser::parse_unary), infix: None, precedence: Precedence::Unary, }, TokenKind::BangEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Equality, }, TokenKind::Bool => todo!(), TokenKind::Boolean => ParseRule { prefix: Some(Parser::parse_boolean), infix: None, precedence: Precedence::None, }, TokenKind::Break => todo!(), TokenKind::Byte => ParseRule { prefix: Some(Parser::parse_byte), infix: None, precedence: Precedence::None, }, TokenKind::Character => ParseRule { prefix: Some(Parser::parse_character), infix: None, precedence: Precedence::None, }, TokenKind::Colon => todo!(), TokenKind::Comma => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Dot => todo!(), TokenKind::DoubleAmpersand => ParseRule { prefix: None, infix: Some(Parser::parse_logical_binary), precedence: Precedence::LogicalAnd, }, TokenKind::DoubleEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Equality, }, TokenKind::DoublePipe => ParseRule { prefix: None, infix: Some(Parser::parse_logical_binary), precedence: Precedence::LogicalOr, }, TokenKind::DoubleDot => todo!(), TokenKind::Eof => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Equal => ParseRule { prefix: None, infix: None, precedence: Precedence::Assignment, }, TokenKind::Else => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Float => ParseRule { prefix: Some(Parser::parse_float), infix: None, precedence: Precedence::None, }, TokenKind::FloatKeyword => todo!(), TokenKind::Greater => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, TokenKind::GreaterEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, TokenKind::Identifier => ParseRule { prefix: Some(Parser::parse_variable), infix: None, precedence: Precedence::None, }, TokenKind::If => ParseRule { prefix: Some(Parser::parse_if), infix: None, precedence: Precedence::None, }, TokenKind::Int => todo!(), TokenKind::Integer => ParseRule { prefix: Some(Parser::parse_integer), infix: None, precedence: Precedence::None, }, TokenKind::LeftCurlyBrace => ParseRule { prefix: Some(Parser::parse_block), infix: None, precedence: Precedence::None, }, TokenKind::LeftParenthesis => ParseRule { prefix: Some(Parser::parse_grouped), infix: None, precedence: Precedence::None, }, TokenKind::LeftSquareBrace => ParseRule { prefix: Some(Parser::parse_list), infix: None, precedence: Precedence::None, }, TokenKind::Less => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, TokenKind::LessEqual => ParseRule { prefix: None, infix: Some(Parser::parse_comparison_binary), precedence: Precedence::Comparison, }, TokenKind::Let => ParseRule { prefix: Some(Parser::parse_let_statement), infix: None, precedence: Precedence::None, }, TokenKind::Loop => todo!(), TokenKind::Map => todo!(), TokenKind::Minus => ParseRule { prefix: Some(Parser::parse_unary), infix: Some(Parser::parse_math_binary), precedence: Precedence::Term, }, TokenKind::MinusEqual => todo!(), TokenKind::Mut => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Percent => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, TokenKind::Plus => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Term, }, TokenKind::PlusEqual => todo!(), TokenKind::RightCurlyBrace => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::RightParenthesis => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::RightSquareBrace => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Semicolon => ParseRule { prefix: None, infix: None, precedence: Precedence::None, }, TokenKind::Slash => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, TokenKind::Star => ParseRule { prefix: None, infix: Some(Parser::parse_math_binary), precedence: Precedence::Factor, }, TokenKind::Str => todo!(), TokenKind::String => ParseRule { prefix: Some(Parser::parse_string), infix: None, precedence: Precedence::None, }, TokenKind::Struct => todo!(), TokenKind::While => ParseRule { prefix: Some(Parser::parse_while), infix: None, precedence: Precedence::None, }, } } } #[derive(Debug, PartialEq)] pub enum ParseError { CannotMutateImmutableVariable { identifier: Identifier, position: Span, }, ExpectedExpression { found: TokenOwned, position: Span, }, ExpectedToken { expected: TokenKind, found: TokenOwned, position: Span, }, ExpectedTokenMultiple { expected: &'static [TokenKind], found: TokenOwned, position: Span, }, InvalidAssignmentTarget { found: TokenOwned, position: Span, }, UndefinedVariable { identifier: Identifier, position: Span, }, RegisterOverflow { position: Span, }, RegisterUnderflow { position: Span, }, // Wrappers around foreign errors Chunk(ChunkError), Lex(LexError), ParseFloatError { error: ParseFloatError, position: Span, }, ParseIntError { error: ParseIntError, position: Span, }, } impl From for ParseError { fn from(error: ChunkError) -> Self { Self::Chunk(error) } } impl AnnotatedError for ParseError { fn title() -> &'static str { "Parse Error" } fn description(&self) -> &'static str { match self { Self::CannotMutateImmutableVariable { .. } => "Cannot mutate immutable variable", Self::ExpectedExpression { .. } => "Expected an expression", Self::ExpectedToken { .. } => "Expected a specific token", Self::ExpectedTokenMultiple { .. } => "Expected one of multiple tokens", Self::InvalidAssignmentTarget { .. } => "Invalid assignment target", Self::UndefinedVariable { .. } => "Undefined variable", Self::RegisterOverflow { .. } => "Register overflow", Self::RegisterUnderflow { .. } => "Register underflow", Self::ParseFloatError { .. } => "Failed to parse float", Self::ParseIntError { .. } => "Failed to parse integer", Self::Chunk(error) => error.description(), Self::Lex(error) => error.description(), } } fn details(&self) -> Option { match self { Self::CannotMutateImmutableVariable { identifier, .. } => { Some(format!("Cannot mutate immutable variable \"{identifier}\"")) } Self::ExpectedExpression { found, .. } => Some(format!("Found \"{found}\"")), Self::ExpectedToken { expected, found, .. } => Some(format!("Expected \"{expected}\", found \"{found}\"")), Self::ExpectedTokenMultiple { expected, found, .. } => { let mut details = String::from("Expected"); for (index, token) in expected.iter().enumerate() { details.push_str(&format!(" \"{token}\"")); if index < expected.len() - 2 { details.push_str(", "); } if index == expected.len() - 2 { details.push_str(" or"); } } details.push_str(&format!(" found \"{found}\"")); Some(details) } Self::InvalidAssignmentTarget { found, .. } => { Some(format!("Invalid assignment target, found \"{found}\"")) } Self::UndefinedVariable { identifier, .. } => { Some(format!("Undefined variable \"{identifier}\"")) } Self::RegisterOverflow { .. } => None, Self::RegisterUnderflow { .. } => None, Self::ParseFloatError { error, .. } => Some(error.to_string()), Self::ParseIntError { error, .. } => Some(error.to_string()), Self::Chunk(error) => error.details(), Self::Lex(error) => error.details(), } } fn position(&self) -> Span { match self { Self::CannotMutateImmutableVariable { position, .. } => *position, Self::ExpectedExpression { position, .. } => *position, Self::ExpectedToken { position, .. } => *position, Self::ExpectedTokenMultiple { position, .. } => *position, Self::InvalidAssignmentTarget { position, .. } => *position, Self::UndefinedVariable { position, .. } => *position, Self::RegisterOverflow { position } => *position, Self::RegisterUnderflow { position } => *position, Self::Chunk(error) => error.position(), Self::Lex(error) => error.position(), Self::ParseFloatError { position, .. } => *position, Self::ParseIntError { position, .. } => *position, } } } impl From for ParseError { fn from(error: LexError) -> Self { Self::Lex(error) } }