1
0
dust/dust-lang/src/parser.rs

1978 lines
72 KiB
Rust

use std::{cell::RefCell, collections::HashMap};
use chumsky::{input::SpannedInput, pratt::*, prelude::*};
use crate::{
abstract_tree::*,
error::DustError,
identifier::Identifier,
lexer::{Control, Keyword, Operator, Token},
};
use self::type_constructor::TypeInvokationConstructor;
pub type ParserInput<'src> =
SpannedInput<Token<'src>, SimpleSpan, &'src [(Token<'src>, SimpleSpan)]>;
pub type ParserExtra<'src> = extra::Err<Rich<'src, Token<'src>, SimpleSpan>>;
pub fn parse<'src>(
tokens: &'src [(Token<'src>, SimpleSpan)],
) -> Result<AbstractTree, Vec<DustError>> {
let statements = parser(false)
.parse(tokens.spanned((tokens.len()..tokens.len()).into()))
.into_result()
.map_err(|errors| {
errors
.into_iter()
.map(|error| DustError::from(error))
.collect::<Vec<DustError>>()
})?;
Ok(AbstractTree::new(statements))
}
pub fn parser<'src>(
allow_built_ins: bool,
) -> impl Parser<'src, ParserInput<'src>, Vec<Statement>, ParserExtra<'src>> {
let comment = select_ref! {
Token::Comment(_) => {}
};
let identifiers: RefCell<HashMap<&str, Identifier>> = RefCell::new(HashMap::new());
let identifier = select! {
Token::Identifier(text) => {
let mut identifiers = identifiers.borrow_mut();
if let Some(identifier) = identifiers.get(&text) {
identifier.clone()
} else {
let new = Identifier::new(text);
identifiers.insert(text, new.clone());
new
}
}
};
let positioned_identifier = identifier
.clone()
.map_with(|identifier, state| identifier.with_position(state.span()));
let basic_value = select! {
Token::Boolean(boolean) => ValueNode::Boolean(boolean),
Token::Float(float) => ValueNode::Float(float),
Token::Integer(integer) => ValueNode::Integer(integer),
Token::String(text) => ValueNode::String(text.to_string()),
}
.map_with(|value, state| Expression::Value(value.with_position(state.span())));
let raw_integer = select! {
Token::Integer(integer) => integer
};
let type_constructor = recursive(|type_constructor| {
let primitive_type = choice((
just(Token::Keyword(Keyword::Any)).to(Type::Any),
just(Token::Keyword(Keyword::Bool)).to(Type::Boolean),
just(Token::Keyword(Keyword::Float)).to(Type::Float),
just(Token::Keyword(Keyword::Int)).to(Type::Integer),
just(Token::Keyword(Keyword::None)).to(Type::None),
just(Token::Keyword(Keyword::Range)).to(Type::Range),
just(Token::Keyword(Keyword::Str)).to(Type::String),
))
.map_with(|r#type, state| TypeConstructor::Raw(r#type.with_position(state.span())));
let function_type = just(Token::Keyword(Keyword::Fn))
.ignore_then(
positioned_identifier
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.at_least(1)
.collect()
.delimited_by(
just(Token::Control(Control::Pipe)),
just(Token::Control(Control::Pipe)),
)
.or_not(),
)
.then(
type_constructor
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
)
.then_ignore(just(Token::Control(Control::SkinnyArrow)))
.then(type_constructor.clone())
.map_with(
|((type_parameters, value_parameters), return_type), state| {
TypeConstructor::Function(
FunctionTypeConstructor {
type_parameters,
value_parameters,
return_type: Box::new(return_type),
}
.with_position(state.span()),
)
},
);
let list_type = type_constructor
.clone()
.then_ignore(just(Token::Control(Control::Semicolon)))
.then(raw_integer.clone())
.delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
)
.map_with(|(item_type, length), state| {
TypeConstructor::List(
ListTypeConstructor {
length: length as usize,
item_type: Box::new(item_type),
}
.with_position(state.span()),
)
});
let list_of_type = type_constructor
.clone()
.delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
)
.map_with(|item_type, state| {
TypeConstructor::ListOf(Box::new(item_type).with_position(state.span()))
});
let enum_variant = positioned_identifier.clone().then(
type_constructor
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.or_not(),
);
let enum_type = just(Token::Keyword(Keyword::Enum))
.ignore_then(
positioned_identifier
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::Pipe)),
just(Token::Control(Control::Pipe)),
)
.or_not(),
)
.then(
enum_variant
.separated_by(just(Token::Control(Control::Comma)))
.at_least(1)
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
),
)
.map_with(|(type_parameters, variants), state| {
TypeConstructor::Enum(
EnumTypeConstructor {
type_parameters,
variants,
}
.with_position(state.span()),
)
});
let type_invokation = positioned_identifier
.clone()
.then(
type_constructor
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.at_least(1)
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.or_not(),
)
.map(|(identifier, type_arguments)| {
TypeConstructor::Invokation(TypeInvokationConstructor {
identifier,
type_arguments,
})
});
choice((
type_invokation,
function_type,
list_type,
list_of_type,
primitive_type,
enum_type,
))
});
let type_specification =
just(Token::Control(Control::Colon)).ignore_then(type_constructor.clone());
let statement = recursive(|statement| {
let allow_built_ins = allow_built_ins.clone();
let block = statement
.clone()
.repeated()
.at_least(1)
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
)
.map_with(|statements, state| Block::new(statements).with_position(state.span()));
let expression = recursive(|expression| {
let allow_built_ins = allow_built_ins.clone();
let identifier_expression = identifier.clone().map_with(|identifier, state| {
Expression::Identifier(identifier.with_position(state.span()))
});
let range = raw_integer
.clone()
.then_ignore(just(Token::Control(Control::DoubleDot)))
.then(raw_integer)
.map_with(|(start, end), state| {
Expression::Value(ValueNode::Range(start..end).with_position(state.span()))
});
let list = expression
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
)
.map_with(|list, state| {
Expression::Value(ValueNode::List(list).with_position(state.span()))
});
let map_fields = identifier
.clone()
.then(type_specification.clone().or_not())
.then_ignore(just(Token::Operator(Operator::Assign)))
.then(expression.clone())
.map(|((identifier, r#type), expression)| (identifier, r#type, expression));
let map = map_fields
.separated_by(just(Token::Control(Control::Comma)).or_not())
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
)
.map_with(|map_assigment_list, state| {
Expression::Value(
ValueNode::Map(map_assigment_list).with_position(state.span()),
)
});
let function = just(Token::Keyword(Keyword::Fn))
.ignore_then(
identifier
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.at_least(1)
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::Pipe)),
just(Token::Control(Control::Pipe)),
)
.or_not(),
)
.then(
identifier
.clone()
.then_ignore(just(Token::Control(Control::Colon)))
.then(type_constructor.clone())
.separated_by(just(Token::Control(Control::Comma)))
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
)
.then_ignore(just(Token::Control(Control::SkinnyArrow)))
.then(type_constructor.clone())
.then(block.clone())
.map_with(
|(((type_parameters, value_parameters), return_type), body), state| {
Expression::Value(
ValueNode::Function {
type_parameters,
value_parameters,
return_type,
body,
}
.with_position(state.span()),
)
},
);
let enum_instance = positioned_identifier
.clone()
.then_ignore(just(Token::Control(Control::DoubleColon)))
.then(positioned_identifier.clone())
.then(
expression
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.or_not(),
)
.map_with(|((type_name, variant), content), state| {
Expression::Value(
ValueNode::EnumInstance {
type_name,
variant,
content,
}
.with_position(state.span()),
)
});
let built_in_function_call = choice((
just(Token::Keyword(Keyword::Length))
.ignore_then(expression.clone())
.map_with(|argument, state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::Length(argument))
.with_position(state.span()),
)
}),
just(Token::Keyword(Keyword::ReadFile))
.ignore_then(expression.clone())
.map_with(|argument, state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::ReadFile(argument))
.with_position(state.span()),
)
}),
just(Token::Keyword(Keyword::ReadLine)).map_with(|_, state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::ReadLine).with_position(state.span()),
)
}),
just(Token::Keyword(Keyword::Sleep))
.ignore_then(expression.clone())
.map_with(|argument, state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::Sleep(argument))
.with_position(state.span()),
)
}),
just(Token::Keyword(Keyword::WriteLine))
.ignore_then(expression.clone())
.map_with(|argument, state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::WriteLine(argument))
.with_position(state.span()),
)
}),
just(Token::Keyword(Keyword::JsonParse))
.ignore_then(type_constructor.clone())
.then(expression.clone())
.map_with(|(constructor, argument), state| {
Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::JsonParse(constructor, argument))
.with_position(state.span()),
)
}),
))
.try_map_with(move |expression, state| {
if allow_built_ins {
Ok(expression)
} else {
Err(Rich::custom(
state.span(),
"Built-in function calls can only be used by the standard library.",
))
}
});
let turbofish = type_constructor
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.at_least(1)
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.delimited_by(
just(Token::Control(Control::DoubleColon)),
just(Token::Control(Control::DoubleColon)),
);
let atom = choice((
enum_instance.clone(),
range.clone(),
function.clone(),
list.clone(),
map.clone(),
basic_value.clone(),
identifier_expression.clone(),
expression.clone().delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
));
let logic_math_indexes_as_and_function_calls = atom.pratt((
// Logic
prefix(
2,
just(Token::Operator(Operator::Not)),
|_, expression, span| {
Expression::Logic(Box::new(Logic::Not(expression)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::Equal)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Equal(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::NotEqual)),
|left, _, right, span| {
Expression::Logic(
Box::new(Logic::NotEqual(left, right)).with_position(span),
)
},
),
infix(
left(1),
just(Token::Operator(Operator::Greater)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Greater(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::Less)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Less(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::GreaterOrEqual)),
|left, _, right, span| {
Expression::Logic(
Box::new(Logic::GreaterOrEqual(left, right)).with_position(span),
)
},
),
infix(
left(1),
just(Token::Operator(Operator::LessOrEqual)),
|left, _, right, span| {
Expression::Logic(
Box::new(Logic::LessOrEqual(left, right)).with_position(span),
)
},
),
infix(
left(1),
just(Token::Operator(Operator::And)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::And(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::Or)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Or(left, right)).with_position(span))
},
),
// Math
infix(
left(1),
just(Token::Operator(Operator::Add)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Add(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::Subtract)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Subtract(left, right)).with_position(span))
},
),
infix(
left(2),
just(Token::Operator(Operator::Multiply)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Multiply(left, right)).with_position(span))
},
),
infix(
left(2),
just(Token::Operator(Operator::Divide)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Divide(left, right)).with_position(span))
},
),
infix(
left(1),
just(Token::Operator(Operator::Modulo)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Modulo(left, right)).with_position(span))
},
),
// Indexes
infix(
left(4),
just(Token::Control(Control::Dot)),
|left, _, right, span| {
Expression::MapIndex(
Box::new(MapIndex::new(left, right)).with_position(span),
)
},
),
postfix(
3,
expression.clone().delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
),
|left, right, span| {
Expression::ListIndex(
Box::new(ListIndex::new(left, right)).with_position(span),
)
},
),
// Function call
postfix(
3,
turbofish.clone().or_not().then(
expression
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
),
|function_expression, (type_parameters, value_parameters), span| {
Expression::FunctionCall(
FunctionCall::new(
function_expression,
type_parameters,
value_parameters,
)
.with_position(span),
)
},
),
// As
postfix(
2,
just(Token::Keyword(Keyword::As)).ignore_then(type_constructor.clone()),
|expression, constructor, span| {
Expression::As(
Box::new(As::new(expression, constructor)).with_position(span),
)
},
),
));
choice((
logic_math_indexes_as_and_function_calls,
enum_instance,
built_in_function_call,
range,
function,
list,
map,
basic_value,
identifier_expression,
))
});
let expression_statement = expression
.clone()
.map(|expression| Statement::Expression(expression));
let async_block = just(Token::Keyword(Keyword::Async))
.ignore_then(statement.clone().repeated().collect().delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
))
.map_with(|statements, state| {
Statement::AsyncBlock(AsyncBlock::new(statements).with_position(state.span()))
});
let r#break = just(Token::Keyword(Keyword::Break))
.map_with(|_, state| Statement::Break(().with_position(state.span())));
let assignment = positioned_identifier
.clone()
.then(type_specification.clone().or_not())
.then(choice((
just(Token::Operator(Operator::Assign)).to(AssignmentOperator::Assign),
just(Token::Operator(Operator::AddAssign)).to(AssignmentOperator::AddAssign),
just(Token::Operator(Operator::SubAssign)).to(AssignmentOperator::SubAssign),
)))
.then(statement.clone())
.map_with(|(((identifier, r#type), operator), statement), state| {
Statement::Assignment(
Assignment::new(identifier, r#type, operator, statement)
.with_position(state.span()),
)
});
let block_statement = block.clone().map(|block| Statement::Block(block));
let r#loop = statement
.clone()
.repeated()
.at_least(1)
.collect()
.delimited_by(
just(Token::Keyword(Keyword::Loop)).then(just(Token::Control(Control::CurlyOpen))),
just(Token::Control(Control::CurlyClose)),
)
.map_with(|statements, state| {
Statement::Loop(Loop::new(statements).with_position(state.span()))
});
let r#while = just(Token::Keyword(Keyword::While))
.ignore_then(expression.clone())
.then(statement.clone().repeated().collect().delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
))
.map_with(|(expression, statements), state| {
Statement::While(While::new(expression, statements).with_position(state.span()))
});
let if_else = just(Token::Keyword(Keyword::If))
.ignore_then(expression.clone())
.then(block.clone())
.then(
just(Token::Keyword(Keyword::Else))
.ignore_then(just(Token::Keyword(Keyword::If)))
.ignore_then(expression.clone())
.then(block.clone())
.repeated()
.collect(),
)
.then(
just(Token::Keyword(Keyword::Else))
.ignore_then(block.clone())
.or_not(),
)
.map_with(
|(((if_expression, if_block), else_ifs), else_block), state| {
Statement::IfElse(
IfElse::new(if_expression, if_block, else_ifs, else_block)
.with_position(state.span()),
)
},
);
let type_assignment = just(Token::Keyword(Keyword::Type))
.ignore_then(positioned_identifier.clone())
.then_ignore(just(Token::Operator(Operator::Assign)))
.then(type_constructor.clone())
.map_with(|(identifier, constructor), state| {
Statement::TypeAssignment(
TypeAssignment::new(identifier, constructor).with_position(state.span()),
)
});
comment
.repeated()
.or_not()
.ignore_then(choice((
assignment,
expression_statement,
async_block,
if_else,
r#break,
block_statement,
r#loop,
r#while,
type_assignment,
)))
.then_ignore(just(Token::Control(Control::Semicolon)).or_not())
});
statement.repeated().collect()
}
#[cfg(test)]
mod tests {
use crate::lexer::lex;
use super::*;
#[test]
fn type_invokation() {
assert_eq!(
parse(&lex("x: Foo(int) = Foo::Bar(42)").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("x").with_position((0, 1)),
Some(TypeConstructor::Invokation(TypeInvokationConstructor {
identifier: Identifier::new("Foo").with_position((3, 6)),
type_arguments: Some(vec![TypeConstructor::Raw(
Type::Integer.with_position((7, 10))
)]),
})),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::EnumInstance {
type_name: Identifier::new("Foo").with_position((14, 17)),
variant: Identifier::new("Bar").with_position((19, 22)),
content: Some(vec![Expression::Value(
ValueNode::Integer(42).with_position((23, 25))
)])
}
.with_position((14, 26))
))
)
.with_position((0, 26))
)
);
}
#[test]
fn enum_instance() {
assert_eq!(
parse(&lex("Foo::Bar(42)").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::EnumInstance {
type_name: Identifier::new("Foo").with_position((0, 3)),
variant: Identifier::new("Bar").with_position((5, 8)),
content: Some(vec![Expression::Value(
ValueNode::Integer(42).with_position((9, 11))
)])
}
.with_position((0, 12))
))
);
}
#[test]
fn enum_type_empty() {
assert_eq!(
parse(&lex("type MyEnum = enum { X, Y }").unwrap()).unwrap()[0],
Statement::TypeAssignment(
TypeAssignment::new(
Identifier::new("MyEnum").with_position((5, 11)),
TypeConstructor::Enum(
EnumTypeConstructor {
type_parameters: None,
variants: vec![
(Identifier::new("X").with_position((21, 22)), None),
(Identifier::new("Y").with_position((24, 25)), None)
],
}
.with_position((14, 27))
)
)
.with_position((0, 27))
)
);
}
#[test]
fn enum_type_with_contents() {
assert_eq!(
parse(&lex("type MyEnum = enum { X(str, int), Y(int) }").unwrap()).unwrap()[0],
Statement::TypeAssignment(
TypeAssignment::new(
Identifier::new("MyEnum").with_position((5, 11)),
TypeConstructor::Enum(
EnumTypeConstructor {
type_parameters: None,
variants: vec![
(
Identifier::new("X").with_position((21, 22)),
Some(vec![
TypeConstructor::Raw(Type::String.with_position((23, 26))),
TypeConstructor::Raw(Type::Integer.with_position((28, 31)))
])
),
(
Identifier::new("Y").with_position((34, 35)),
Some(vec![TypeConstructor::Raw(
Type::Integer.with_position((36, 39))
)])
)
],
}
.with_position((14, 42))
)
)
.with_position((0, 42))
)
);
}
#[test]
fn enum_type_with_type_parameters() {
assert_eq!(
parse(&lex("type MyEnum = enum |T, U| { X(T), Y(U) }").unwrap()).unwrap()[0],
Statement::TypeAssignment(
TypeAssignment::new(
Identifier::new("MyEnum").with_position((5, 11)),
TypeConstructor::Enum(
EnumTypeConstructor {
type_parameters: Some(vec![
Identifier::new("T").with_position((20, 21)),
Identifier::new("U").with_position((23, 24)),
]),
variants: vec![
(
Identifier::new("X").with_position((28, 29)),
Some(vec![TypeConstructor::Invokation(
TypeInvokationConstructor {
identifier: Identifier::new("T")
.with_position((30, 31)),
type_arguments: None,
}
)])
),
(
Identifier::new("Y").with_position((34, 35)),
Some(vec![TypeConstructor::Invokation(
TypeInvokationConstructor {
identifier: Identifier::new("U")
.with_position((36, 37)),
type_arguments: None,
}
)])
),
],
}
.with_position((14, 40))
)
)
.with_position((0, 40))
)
);
}
// Reuse these tests when structures are reimplemented
// #[test]
// fn structure_instance() {
// assert_eq!(
// parse(
// &lex("
// Foo {
// bar = 42,
// baz = 'hiya',
// }
// ")
// .unwrap()
// )
// .unwrap()[0],
// Statement::Expression(Expression::Value(
// ValueNode::Structure {
// name: Identifier::new("Foo").with_position((21, 24)),
// fields: vec![
// (
// Identifier::new("bar").with_position((0, 0)),
// Expression::Value(ValueNode::Integer(42).with_position((57, 59)))
// ),
// (
// Identifier::new("baz").with_position((0, 0)),
// Expression::Value(
// ValueNode::String("hiya".to_string()).with_position((91, 97))
// )
// ),
// ]
// }
// .with_position((21, 120))
// ))
// )
// }
// #[test]
// fn structure_definition() {
// assert_eq!(
// parse(
// &lex("
// struct Foo {
// bar : int,
// baz : str,
// }
// ")
// .unwrap()
// )
// .unwrap()[0],
// Statement::StructureDefinition(
// StructureDefinition::new(
// Identifier::new("Foo"),
// vec![
// (
// Identifier::new("bar"),
// TypeConstructor::Type(Type::Integer.with_position((64, 67)))
// ),
// (
// Identifier::new("baz"),
// TypeConstructor::Type(Type::String.with_position((99, 102)))
// ),
// ]
// )
// .with_position((21, 125))
// )
// )
// }
#[test]
fn type_alias() {
assert_eq!(
parse(&lex("type MyType = str").unwrap()).unwrap()[0],
Statement::TypeAssignment(
TypeAssignment::new(
Identifier::new("MyType").with_position((5, 11)),
TypeConstructor::Raw(Type::String.with_position((14, 17)))
)
.with_position((0, 17))
)
)
}
#[test]
fn r#as() {
assert_eq!(
parse(&lex("1 as str").unwrap()).unwrap()[0],
Statement::Expression(Expression::As(
Box::new(As::new(
Expression::Value(ValueNode::Integer(1).with_position((0, 1))),
TypeConstructor::Raw(Type::String.with_position((5, 8)))
))
.with_position((0, 8))
))
)
}
#[test]
fn built_in_function() {
let tokens = lex("READ_LINE").unwrap();
let statements = parser(true)
.parse(tokens.spanned((tokens.len()..tokens.len()).into()))
.into_result()
.map_err(|errors| {
errors
.into_iter()
.map(|error| DustError::from(error))
.collect::<Vec<DustError>>()
})
.unwrap();
assert_eq!(
statements[0],
Statement::Expression(Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::ReadLine).with_position((0, 9))
))
);
let tokens = lex("WRITE_LINE 'hiya'").unwrap();
let statements = parser(true)
.parse(tokens.spanned((tokens.len()..tokens.len()).into()))
.into_result()
.map_err(|errors| {
errors
.into_iter()
.map(|error| DustError::from(error))
.collect::<Vec<DustError>>()
})
.unwrap();
assert_eq!(
statements[0],
Statement::Expression(Expression::BuiltInFunctionCall(
Box::new(BuiltInFunctionCall::WriteLine(Expression::Value(
ValueNode::String("hiya".to_string()).with_position((11, 17))
)))
.with_position((0, 17))
))
);
}
#[test]
fn async_block() {
assert_eq!(
parse(
&lex("
async {
1
2
3
}
")
.unwrap()
)
.unwrap()[0],
Statement::AsyncBlock(
AsyncBlock::new(vec![
Statement::Expression(Expression::Value(
ValueNode::Integer(1).with_position((53, 54))
)),
Statement::Expression(Expression::Value(
ValueNode::Integer(2).with_position((79, 80))
)),
Statement::Expression(Expression::Value(
ValueNode::Integer(3).with_position((105, 106))
)),
])
.with_position((21, 128))
)
)
}
#[test]
fn map_index() {
assert_eq!(
parse(&lex("{ x = 42 }.x").unwrap()).unwrap()[0],
Statement::Expression(Expression::MapIndex(
Box::new(MapIndex::new(
Expression::Value(
ValueNode::Map(vec![(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(42).with_position((6, 8)))
)])
.with_position((0, 10))
),
Expression::Identifier(Identifier::new("x").with_position((11, 12)))
))
.with_position((0, 12))
))
);
assert_eq!(
parse(&lex("foo.x").unwrap()).unwrap()[0],
Statement::Expression(Expression::MapIndex(
Box::new(MapIndex::new(
Expression::Identifier(Identifier::new("foo").with_position((0, 3))),
Expression::Identifier(Identifier::new("x").with_position((4, 5)))
))
.with_position((0, 5))
))
);
}
#[test]
fn r#while() {
assert_eq!(
parse(&lex("while true { output('hi') }").unwrap()).unwrap()[0],
Statement::While(
While::new(
Expression::Value(ValueNode::Boolean(true).with_position((6, 10))),
vec![Statement::Expression(Expression::FunctionCall(
FunctionCall::new(
Expression::Identifier(
Identifier::new("output").with_position((13, 19))
),
None,
vec![Expression::Value(
ValueNode::String("hi".to_string()).with_position((20, 24))
)]
)
.with_position((13, 25))
))]
)
.with_position((0, 27))
)
)
}
#[test]
fn boolean_type() {
assert_eq!(
parse(&lex("foobar : bool = true").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(TypeConstructor::Raw(Type::Boolean.with_position((9, 13)))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::Boolean(true).with_position((16, 20))
))
)
.with_position((0, 20))
)
);
}
#[test]
fn list_type() {
assert_eq!(
parse(&lex("foobar: [int; 2] = []").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(TypeConstructor::List(
ListTypeConstructor {
length: 2,
item_type: Box::new(TypeConstructor::Raw(
Type::Integer.with_position((9, 12))
))
}
.with_position((8, 16))
)),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::List(vec![]).with_position((19, 21))
))
)
.with_position((0, 21))
)
);
}
#[test]
fn list_of_type() {
assert_eq!(
parse(&lex("foobar : [bool] = [true]").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(TypeConstructor::ListOf(
Box::new(TypeConstructor::Raw(Type::Boolean.with_position((10, 14))))
.with_position((9, 15))
)),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::List(vec![Expression::Value(
ValueNode::Boolean(true).with_position((19, 23))
)])
.with_position((18, 24))
))
)
.with_position((0, 24))
)
);
}
#[test]
fn function_type() {
assert_eq!(
parse(&lex("type Foo = fn |T| (int) -> T").unwrap()).unwrap()[0],
Statement::TypeAssignment(
TypeAssignment::new(
Identifier::new("Foo").with_position((5, 8)),
TypeConstructor::Function(
FunctionTypeConstructor {
type_parameters: Some(vec![
Identifier::new("T").with_position((15, 16))
]),
value_parameters: vec![TypeConstructor::Raw(
Type::Integer.with_position((19, 22))
)],
return_type: Box::new(TypeConstructor::Invokation(
TypeInvokationConstructor {
identifier: Identifier::new("T").with_position((27, 28)),
type_arguments: None,
}
)),
}
.with_position((11, 28))
)
)
.with_position((0, 28))
)
);
}
#[test]
fn function_call() {
assert_eq!(
parse(&lex("foobar()").unwrap()).unwrap()[0],
Statement::Expression(Expression::FunctionCall(
FunctionCall::new(
Expression::Identifier(Identifier::new("foobar").with_position((0, 6))),
None,
Vec::with_capacity(0),
)
.with_position((0, 8))
))
)
}
#[test]
fn function_call_with_type_arguments() {
assert_eq!(
parse(&lex("foobar::(str)::('hi')").unwrap()).unwrap()[0],
Statement::Expression(Expression::FunctionCall(
FunctionCall::new(
Expression::Identifier(Identifier::new("foobar").with_position((0, 6))),
Some(vec![TypeConstructor::Raw(
Type::String.with_position((9, 12))
)]),
vec![Expression::Value(
ValueNode::String("hi".to_string()).with_position((16, 20))
)],
)
.with_position((0, 21))
))
)
}
#[test]
fn range() {
assert_eq!(
parse(&lex("1..10").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Range(1..10).with_position((0, 5))
))
)
}
#[test]
fn function() {
assert_eq!(
parse(&lex("fn () -> int { 0 }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Function {
type_parameters: None,
value_parameters: vec![],
return_type: TypeConstructor::Raw(Type::Integer.with_position((9, 12))),
body: Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::Integer(0).with_position((15, 16))
))])
.with_position((13, 18))
}
.with_position((0, 18))
),)
);
assert_eq!(
parse(&lex("fn (x: int) -> int { x }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Function {
type_parameters: None,
value_parameters: vec![(
Identifier::new("x"),
TypeConstructor::Raw(Type::Integer.with_position((7, 10)))
)],
return_type: TypeConstructor::Raw(Type::Integer.with_position((15, 18))),
body: Block::new(vec![Statement::Expression(Expression::Identifier(
Identifier::new("x").with_position((21, 22))
))])
.with_position((19, 24)),
}
.with_position((0, 24))
),)
);
}
#[test]
fn function_with_type_arguments() {
assert_eq!(
parse(&lex("fn |T, U| (x: T, y: U) -> T { x }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Function {
type_parameters: Some(vec![Identifier::new("T"), Identifier::new("U"),]),
value_parameters: vec![
(
Identifier::new("x"),
TypeConstructor::Invokation(TypeInvokationConstructor {
identifier: Identifier::new("T").with_position((14, 15)),
type_arguments: None,
})
),
(
Identifier::new("y"),
TypeConstructor::Invokation(TypeInvokationConstructor {
identifier: Identifier::new("U").with_position((20, 21)),
type_arguments: None,
})
)
],
return_type: TypeConstructor::Invokation(TypeInvokationConstructor {
identifier: Identifier::new("T").with_position((26, 27)),
type_arguments: None,
}),
body: Block::new(vec![Statement::Expression(Expression::Identifier(
Identifier::new("x").with_position((30, 31))
))])
.with_position((28, 33)),
}
.with_position((0, 33))
))
)
}
#[test]
fn r#if() {
assert_eq!(
parse(&lex("if true { 'foo' }").unwrap()).unwrap()[0],
Statement::IfElse(
IfElse::new(
Expression::Value(ValueNode::Boolean(true).with_position((3, 7))),
Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("foo".to_string()).with_position((10, 15))
))])
.with_position((8, 17)),
Vec::with_capacity(0),
None
)
.with_position((0, 17))
)
);
}
#[test]
fn if_else() {
assert_eq!(
parse(&lex("if true {'foo' } else { 'bar' }").unwrap()).unwrap()[0],
Statement::IfElse(
IfElse::new(
Expression::Value(ValueNode::Boolean(true).with_position((3, 7))),
Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("foo".to_string()).with_position((9, 14))
))])
.with_position((8, 16)),
Vec::with_capacity(0),
Some(
Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("bar".to_string()).with_position((24, 29))
))])
.with_position((22, 31))
)
)
.with_position((0, 31)),
)
)
}
#[test]
fn map() {
assert_eq!(
parse(&lex("{ foo = 'bar' }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Map(vec![(
Identifier::new("foo"),
None,
Expression::Value(ValueNode::String("bar".to_string()).with_position((8, 13)))
)])
.with_position((0, 15))
),)
);
assert_eq!(
parse(&lex("{ x = 1, y = 2, }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Map(vec![
(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(1).with_position((6, 7)))
),
(
Identifier::new("y"),
None,
Expression::Value(ValueNode::Integer(2).with_position((13, 14)))
),
])
.with_position((0, 17))
),)
);
assert_eq!(
parse(&lex("{ x = 1 y = 2 }").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Map(vec![
(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(1).with_position((6, 7)))
),
(
Identifier::new("y"),
None,
Expression::Value(ValueNode::Integer(2).with_position((12, 13)))
),
])
.with_position((0, 15))
),)
);
}
#[test]
fn math() {
assert_eq!(
parse(&lex("1 + 1").unwrap()).unwrap()[0],
Statement::Expression(Expression::Math(
Box::new(Math::Add(
Expression::Value(ValueNode::Integer(1).with_position((0, 1))),
Expression::Value(ValueNode::Integer(1).with_position((4, 5)))
))
.with_position((0, 5))
))
);
}
#[test]
fn r#loop() {
assert_eq!(
parse(&lex("loop { 42 }").unwrap()).unwrap()[0],
Statement::Loop(
Loop::new(vec![Statement::Expression(Expression::Value(
ValueNode::Integer(42).with_position((7, 9))
))])
.with_position((0, 11))
)
);
assert_eq!(
parse(&lex("loop { if i > 2 { break } else { i += 1 } }").unwrap()).unwrap()[0],
Statement::Loop(
Loop::new(vec![Statement::IfElse(
IfElse::new(
Expression::Logic(
Box::new(Logic::Greater(
Expression::Identifier(
Identifier::new("i").with_position((10, 11))
),
Expression::Value(ValueNode::Integer(2).with_position((14, 15)))
))
.with_position((10, 15))
),
Block::new(vec![Statement::Break(().with_position((18, 23)))])
.with_position((16, 25)),
Vec::with_capacity(0),
Some(
Block::new(vec![Statement::Assignment(
Assignment::new(
Identifier::new("i").with_position((33, 34)),
None,
AssignmentOperator::AddAssign,
Statement::Expression(Expression::Value(
ValueNode::Integer(1).with_position((38, 39))
))
)
.with_position((33, 39))
)])
.with_position((31, 41))
)
)
.with_position((7, 41))
)])
.with_position((0, 43))
)
);
}
#[test]
fn block() {
assert_eq!(
parse(&lex("{ x }").unwrap()).unwrap()[0],
Statement::Block(
Block::new(vec![Statement::Expression(Expression::Identifier(
Identifier::new("x").with_position((2, 3))
),)])
.with_position((0, 5))
)
);
assert_eq!(
parse(
&lex("
{
x;
y;
z
}
")
.unwrap()
)
.unwrap()[0],
Statement::Block(
Block::new(vec![
Statement::Expression(Expression::Identifier(
Identifier::new("x").with_position((39, 40))
)),
Statement::Expression(Expression::Identifier(
Identifier::new("y").with_position((62, 63))
)),
Statement::Expression(Expression::Identifier(
Identifier::new("z").with_position((85, 86))
)),
])
.with_position((17, 104)),
)
);
assert_eq!(
parse(
&lex("
{
1 == 1
z
}
")
.unwrap()
)
.unwrap()[0],
Statement::Block(
Block::new(vec![
Statement::Expression(Expression::Logic(
Box::new(Logic::Equal(
Expression::Value(ValueNode::Integer(1).with_position((39, 40))),
Expression::Value(ValueNode::Integer(1).with_position((44, 45)))
))
.with_position((39, 45))
)),
Statement::Expression(Expression::Identifier(
Identifier::new("z").with_position((66, 67))
)),
])
.with_position((17, 85)),
)
);
}
#[test]
fn identifier() {
assert_eq!(
parse(&lex("x").unwrap()).unwrap()[0],
Statement::Expression(Expression::Identifier(
Identifier::new("x").with_position((0, 1))
))
);
assert_eq!(
parse(&lex("foobar").unwrap()).unwrap()[0],
Statement::Expression(Expression::Identifier(
Identifier::new("foobar").with_position((0, 6))
))
);
assert_eq!(
parse(&lex("HELLO").unwrap()).unwrap()[0],
Statement::Expression(Expression::Identifier(
Identifier::new("HELLO").with_position((0, 5))
))
);
}
#[test]
fn assignment() {
assert_eq!(
parse(&lex("foobar = 1").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
None,
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::Integer(1).with_position((9, 10))
))
)
.with_position((0, 10)),
)
);
}
#[test]
fn assignment_with_type() {
assert_eq!(
parse(&lex("foobar: int = 1").unwrap()).unwrap()[0],
Statement::Assignment(
Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(TypeConstructor::Raw(Type::Integer.with_position((8, 11)))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(
ValueNode::Integer(1).with_position((14, 15))
))
)
.with_position((0, 15)),
)
);
}
#[test]
fn logic() {
assert_eq!(
parse(&lex("x == 1").unwrap()).unwrap()[0],
Statement::Expression(Expression::Logic(
Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("x").with_position((0, 1))),
Expression::Value(ValueNode::Integer(1).with_position((5, 6))),
))
.with_position((0, 6))
))
);
assert_eq!(
parse(&lex("(x == 1) && (y == 2)").unwrap()).unwrap()[0],
Statement::Expression(Expression::Logic(
Box::new(Logic::And(
Expression::Logic(
Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("x").with_position((1, 2))),
Expression::Value(ValueNode::Integer(1).with_position((6, 7))),
))
.with_position((1, 7))
),
Expression::Logic(
Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("y").with_position((13, 14))),
Expression::Value(ValueNode::Integer(2).with_position((18, 19))),
))
.with_position((13, 19))
)
))
.with_position((0, 20))
))
);
assert_eq!(
parse(&lex("(x == 1) && (y == 2) && true").unwrap()).unwrap()[0],
Statement::Expression(Expression::Logic(
Box::new(Logic::And(
Expression::Logic(
Box::new(Logic::And(
Expression::Logic(
Box::new(Logic::Equal(
Expression::Identifier(
Identifier::new("x").with_position((1, 2))
),
Expression::Value(ValueNode::Integer(1).with_position((6, 7)))
))
.with_position((1, 7))
),
Expression::Logic(
Box::new(Logic::Equal(
Expression::Identifier(
Identifier::new("y").with_position((13, 14))
),
Expression::Value(
ValueNode::Integer(2).with_position((18, 19))
)
))
.with_position((13, 19))
),
))
.with_position((0, 20))
),
Expression::Value(ValueNode::Boolean(true).with_position((24, 28)))
))
.with_position((0, 28))
))
);
}
#[test]
fn list() {
assert_eq!(
parse(&lex("[]").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::List(Vec::with_capacity(0)).with_position((0, 2))
),)
);
assert_eq!(
parse(&lex("[42]").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::List(vec![Expression::Value(
ValueNode::Integer(42).with_position((1, 3))
)])
.with_position((0, 4))
))
);
assert_eq!(
parse(&lex("[42, 'foo', 'bar', [1, 2, 3,]]").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::List(vec![
Expression::Value(ValueNode::Integer(42).with_position((1, 3))),
Expression::Value(ValueNode::String("foo".to_string()).with_position((5, 10))),
Expression::Value(ValueNode::String("bar".to_string()).with_position((12, 17))),
Expression::Value(
ValueNode::List(vec![
Expression::Value(ValueNode::Integer(1).with_position((20, 21))),
Expression::Value(ValueNode::Integer(2).with_position((23, 24))),
Expression::Value(ValueNode::Integer(3).with_position((26, 27))),
])
.with_position((19, 29))
)
])
.with_position((0, 30))
),)
);
}
#[test]
fn r#true() {
assert_eq!(
parse(&lex("true").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Boolean(true).with_position((0, 4))
))
);
}
#[test]
fn r#false() {
assert_eq!(
parse(&lex("false").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Boolean(false).with_position((0, 5))
))
);
}
#[test]
fn positive_float() {
assert_eq!(
parse(&lex("0.0").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(0.0).with_position((0, 3))
))
);
assert_eq!(
parse(&lex("42.0").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(42.0).with_position((0, 4))
))
);
let max_float = f64::MAX.to_string() + ".0";
assert_eq!(
parse(&lex(&max_float).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(f64::MAX).with_position((0, 311))
))
);
let min_positive_float = f64::MIN_POSITIVE.to_string();
assert_eq!(
parse(&lex(&min_positive_float).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(f64::MIN_POSITIVE).with_position((0, 326))
),)
);
}
#[test]
fn negative_float() {
assert_eq!(
parse(&lex("-0.0").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(-0.0).with_position((0, 4))
))
);
assert_eq!(
parse(&lex("-42.0").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(-42.0).with_position((0, 5))
))
);
let min_float = f64::MIN.to_string() + ".0";
assert_eq!(
parse(&lex(&min_float).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(f64::MIN).with_position((0, 312))
))
);
let max_negative_float = format!("-{}", f64::MIN_POSITIVE);
assert_eq!(
parse(&lex(&max_negative_float).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(-f64::MIN_POSITIVE).with_position((0, 327))
),)
);
}
#[test]
fn other_float() {
assert_eq!(
parse(&lex("Infinity").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(f64::INFINITY).with_position((0, 8))
))
);
assert_eq!(
parse(&lex("-Infinity").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Float(f64::NEG_INFINITY).with_position((0, 9))
))
);
if let Statement::Expression(Expression::Value(WithPosition {
node: ValueNode::Float(float),
..
})) = &parse(&lex("NaN").unwrap()).unwrap()[0]
{
assert!(float.is_nan());
} else {
panic!("Expected a float.");
}
}
#[test]
fn positive_integer() {
for i in 0..10 {
let source = i.to_string();
let tokens = lex(&source).unwrap();
let statements = parse(&tokens).unwrap();
assert_eq!(
statements[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(i).with_position((0, 1))
))
)
}
assert_eq!(
parse(&lex("42").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(42).with_position((0, 2))
))
);
let maximum_integer = i64::MAX.to_string();
assert_eq!(
parse(&lex(&maximum_integer).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(i64::MAX).with_position((0, 19))
))
);
}
#[test]
fn negative_integer() {
for i in -9..0 {
let source = i.to_string();
let tokens = lex(&source).unwrap();
let statements = parse(&tokens).unwrap();
assert_eq!(
statements[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(i).with_position((0, 2))
))
)
}
assert_eq!(
parse(&lex("-42").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(-42).with_position((0, 3))
))
);
let minimum_integer = i64::MIN.to_string();
assert_eq!(
parse(&lex(&minimum_integer).unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::Integer(i64::MIN).with_position((0, 20))
))
);
}
#[test]
fn double_quoted_string() {
assert_eq!(
parse(&lex("\"\"").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("".to_string()).with_position((0, 2))
))
);
assert_eq!(
parse(&lex("\"42\"").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("42".to_string()).with_position((0, 4))
),)
);
assert_eq!(
parse(&lex("\"foobar\"").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("foobar".to_string()).with_position((0, 8))
),)
);
}
#[test]
fn single_quoted_string() {
assert_eq!(
parse(&lex("''").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("".to_string()).with_position((0, 2))
))
);
assert_eq!(
parse(&lex("'42'").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("42".to_string()).with_position((0, 4))
),)
);
assert_eq!(
parse(&lex("'foobar'").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("foobar".to_string()).with_position((0, 8))
),)
);
}
#[test]
fn grave_quoted_string() {
assert_eq!(
parse(&lex("``").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("".to_string()).with_position((0, 2))
))
);
assert_eq!(
parse(&lex("`42`").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("42".to_string()).with_position((0, 4))
),)
);
assert_eq!(
parse(&lex("`foobar`").unwrap()).unwrap()[0],
Statement::Expression(Expression::Value(
ValueNode::String("foobar".to_string()).with_position((0, 8))
),)
);
}
}