1
0
dust/src/parser.rs

1132 lines
41 KiB
Rust

use std::{cell::RefCell, collections::HashMap};
use chumsky::{input::SpannedInput, pratt::*, prelude::*};
use crate::{
abstract_tree::*,
error::Error,
lexer::{Control, Operator, Token},
};
pub type ParserInput<'src> =
SpannedInput<Token<'src>, SimpleSpan, &'src [(Token<'src>, SimpleSpan)]>;
pub fn parse<'src>(
tokens: &'src [(Token<'src>, SimpleSpan)],
) -> Result<Vec<WithPosition<Statement>>, Vec<Error>> {
parser()
.parse(tokens.spanned((tokens.len()..tokens.len()).into()))
.into_result()
.map_err(|errors| errors.into_iter().map(|error| error.into()).collect())
}
pub fn parser<'src>() -> impl Parser<
'src,
ParserInput<'src>,
Vec<WithPosition<Statement>>,
extra::Err<Rich<'src, Token<'src>, SimpleSpan>>,
> {
let identifiers: RefCell<HashMap<&str, Identifier>> = RefCell::new(HashMap::new());
let identifier = select! {
Token::Identifier(text) => {
let mut identifiers = identifiers.borrow_mut();
if let Some(identifier) = identifiers.get(&text) {
identifier.clone()
} else {
let new = Identifier::new(text);
identifiers.insert(text, new.clone());
new
}
}
};
let positioned_identifier = identifier
.clone()
.map_with(|identifier, state| identifier.with_position(state.span()));
let basic_value = select! {
Token::Boolean(boolean) => ValueNode::Boolean(boolean),
Token::Float(float) => ValueNode::Float(float),
Token::Integer(integer) => ValueNode::Integer(integer),
Token::String(string) => ValueNode::String(string.to_string()),
}
.map_with(|value, state| Expression::Value(value).with_position(state.span()));
let r#type = recursive(|r#type| {
let function_type = r#type
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.then_ignore(just(Token::Control(Control::Arrow)))
.then(r#type.clone())
.map(|(parameter_types, return_type)| Type::Function {
parameter_types,
return_type: Box::new(return_type),
});
let list_of = just(Token::Keyword("list"))
.ignore_then(r#type.clone().delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
))
.map(|item_type| Type::ListOf(Box::new(item_type)));
let list_exact = r#type
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
)
.map(|types| Type::ListExact(types));
choice((
function_type,
list_of,
list_exact,
just(Token::Keyword("any")).to(Type::Any),
just(Token::Keyword("bool")).to(Type::Boolean),
just(Token::Keyword("float")).to(Type::Float),
just(Token::Keyword("int")).to(Type::Integer),
just(Token::Keyword("none")).to(Type::None),
just(Token::Keyword("range")).to(Type::Range),
just(Token::Keyword("str")).to(Type::String),
just(Token::Keyword("list")).to(Type::List),
))
})
.map_with(|r#type, state| r#type.with_position(state.span()));
let type_specification = just(Token::Control(Control::Colon)).ignore_then(r#type.clone());
let positioned_statement = recursive(|positioned_statement| {
let block = positioned_statement
.clone()
.repeated()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
)
.map(|statements| Block::new(statements));
let positioned_expression = recursive(|positioned_expression| {
let identifier_expression = identifier.clone().map_with(|identifier, state| {
Expression::Identifier(identifier).with_position(state.span())
});
let raw_integer = select! {
Token::Integer(integer) => integer
};
let range = raw_integer
.clone()
.then_ignore(just(Token::Control(Control::DoubleDot)))
.then(raw_integer)
.map_with(|(start, end), state| {
Expression::Value(ValueNode::Range(start..end)).with_position(state.span())
});
let list = positioned_expression
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
)
.map_with(|list, state| {
Expression::Value(ValueNode::List(list)).with_position(state.span())
});
let map_assignment = identifier
.clone()
.then(type_specification.clone().or_not())
.then_ignore(just(Token::Operator(Operator::Assign)))
.then(positioned_expression.clone())
.map(|((identifier, r#type), expression)| (identifier, r#type, expression));
let map = map_assignment
.separated_by(just(Token::Control(Control::Comma)).or_not())
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
)
.map_with(|map_assigment_list, state| {
Expression::Value(ValueNode::Map(map_assigment_list))
.with_position(state.span())
});
let function = identifier
.clone()
.then(type_specification.clone())
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
)
.then(type_specification.clone())
.then(block.clone())
.map_with(|((parameters, return_type), body), state| {
Expression::Value(ValueNode::Function {
parameters,
return_type,
body: body.with_position(state.span()),
})
.with_position(state.span())
});
let atom = choice((
function.clone(),
identifier_expression.clone(),
basic_value.clone(),
list.clone(),
map.clone(),
positioned_expression.clone().delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
));
use Operator::*;
let logic_math_indexes_and_function_calls = atom.pratt((
prefix(2, just(Token::Operator(Not)), |_, expression, span| {
Expression::Logic(Box::new(Logic::Not(expression))).with_position(span)
}),
postfix(
2,
positioned_expression.clone().delimited_by(
just(Token::Control(Control::SquareOpen)),
just(Token::Control(Control::SquareClose)),
),
|left, right, span| {
Expression::ListIndex(Box::new(ListIndex::new(left, right)))
.with_position(span)
},
),
postfix(
3,
positioned_expression
.clone()
.separated_by(just(Token::Control(Control::Comma)))
.collect()
.delimited_by(
just(Token::Control(Control::ParenOpen)),
just(Token::Control(Control::ParenClose)),
),
|op, expression, span| {
Expression::FunctionCall(FunctionCall::new(op, expression))
.with_position(span)
},
),
infix(
left(4),
just(Token::Control(Control::Dot)),
|left, _, right, span| {
Expression::MapIndex(Box::new(MapIndex::new(left, right)))
.with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Equal)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Equal(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(NotEqual)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::NotEqual(left, right)))
.with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Greater)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Greater(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Less)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Less(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(GreaterOrEqual)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::GreaterOrEqual(left, right)))
.with_position(span)
},
),
infix(
left(1),
just(Token::Operator(LessOrEqual)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::LessOrEqual(left, right)))
.with_position(span)
},
),
infix(
left(1),
just(Token::Operator(And)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::And(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Or)),
|left, _, right, span| {
Expression::Logic(Box::new(Logic::Or(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Add)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Add(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Subtract)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Subtract(left, right))).with_position(span)
},
),
infix(
left(2),
just(Token::Operator(Multiply)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Multiply(left, right))).with_position(span)
},
),
infix(
left(2),
just(Token::Operator(Divide)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Divide(left, right))).with_position(span)
},
),
infix(
left(1),
just(Token::Operator(Modulo)),
|left, _, right, span| {
Expression::Math(Box::new(Math::Modulo(left, right))).with_position(span)
},
),
));
choice((
range,
logic_math_indexes_and_function_calls,
function,
list,
map,
basic_value,
identifier_expression,
))
});
let expression_statement =
positioned_expression
.clone()
.map(|WithPosition { node, position }| {
Statement::Expression(node).with_position(position)
});
let r#break = just(Token::Keyword("break"))
.map_with(|_, state| Statement::Break.with_position(state.span()));
let assignment = positioned_identifier
.clone()
.then(type_specification.clone().or_not())
.then(choice((
just(Token::Operator(Operator::Assign)).to(AssignmentOperator::Assign),
just(Token::Operator(Operator::AddAssign)).to(AssignmentOperator::AddAssign),
just(Token::Operator(Operator::SubAssign)).to(AssignmentOperator::SubAssign),
)))
.then(positioned_statement.clone())
.map_with(|(((identifier, r#type), operator), statement), state| {
Statement::Assignment(Assignment::new(identifier, r#type, operator, statement))
.with_position(state.span())
});
let block_statement = block
.clone()
.map_with(|block, state| Statement::Block(block).with_position(state.span()));
let r#loop = positioned_statement
.clone()
.repeated()
.at_least(1)
.collect()
.delimited_by(
just(Token::Keyword("loop")).then(just(Token::Control(Control::CurlyOpen))),
just(Token::Control(Control::CurlyClose)),
)
.map_with(|statements, state| {
Statement::Loop(Loop::new(statements)).with_position(state.span())
});
let r#while = just(Token::Keyword("while"))
.ignore_then(positioned_expression.clone())
.then(
positioned_statement
.clone()
.repeated()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
),
)
.map_with(|(expression, statements), state| {
Statement::While(While::new(expression, statements)).with_position(state.span())
});
let if_else = just(Token::Keyword("if"))
.ignore_then(positioned_expression.clone())
.then(block.clone())
.then(
just(Token::Keyword("else"))
.ignore_then(block.clone())
.or_not(),
)
.map_with(|((if_expression, if_block), else_block), state| {
Statement::IfElse(IfElse::new(if_expression, if_block, else_block))
.with_position(state.span())
});
let structure_field = identifier.clone().then(type_specification.clone());
let structure_definition = just(Token::Keyword("struct"))
.ignore_then(identifier.clone())
.then(
structure_field
.separated_by(just(Token::Control(Control::Comma)))
.allow_trailing()
.collect()
.delimited_by(
just(Token::Control(Control::CurlyOpen)),
just(Token::Control(Control::CurlyClose)),
),
)
.map_with(|(name, fields), state| {
Statement::StructureDefinition(StructureDefinition::new(name, fields))
.with_position(state.span())
});
choice((
structure_definition,
if_else,
assignment,
expression_statement,
r#break,
block_statement,
r#loop,
r#while,
))
.then_ignore(just(Token::Control(Control::Semicolon)).or_not())
});
positioned_statement.repeated().collect()
}
#[cfg(test)]
mod tests {
use crate::lexer::lex;
use super::*;
#[test]
fn structure_definition() {
assert_eq!(
parse(
&lex("
struct Foo {
bar : int,
baz : str,
}
")
.unwrap()
)
.unwrap()[0]
.node,
Statement::StructureDefinition(StructureDefinition::new(
Identifier::new("Foo"),
vec![
(
Identifier::new("bar"),
Type::Integer.with_position((64, 67))
),
(
Identifier::new("baz"),
Type::String.with_position((99, 102))
),
]
))
)
}
#[test]
fn map_index() {
assert_eq!(
parse(&lex("{ x = 42}.x").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::MapIndex(Box::new(MapIndex::new(
Expression::Value(ValueNode::Map(vec![(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(42)).with_position((6, 8))
)]))
.with_position((0, 9)),
Expression::Identifier(Identifier::new("x")).with_position((10, 11))
))))
);
assert_eq!(
parse(&lex("foo.x").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::MapIndex(Box::new(MapIndex::new(
Expression::Identifier(Identifier::new("foo")).with_position((0, 3)),
Expression::Identifier(Identifier::new("x")).with_position((4, 5))
))))
);
}
#[test]
fn r#while() {
assert_eq!(
parse(&lex("while true { output('hi') }").unwrap()).unwrap()[0].node,
Statement::While(While::new(
Expression::Value(ValueNode::Boolean(true)).with_position((6, 11)),
vec![
Statement::Expression(Expression::FunctionCall(FunctionCall::new(
Expression::Identifier(Identifier::new("output")).with_position((13, 19)),
vec![Expression::Value(ValueNode::String("hi".to_string()))
.with_position((20, 24))]
)))
.with_position((13, 26))
]
))
)
}
#[test]
fn boolean_type() {
assert_eq!(
parse(&lex("foobar : bool = true").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(Type::Boolean.with_position((9, 14))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::Boolean(true)))
.with_position((16, 20))
),)
);
}
#[test]
fn list_type() {
assert_eq!(
parse(&lex("foobar: list = []").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(Type::List.with_position((8, 13))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::List(vec![])))
.with_position((15, 17))
),)
);
}
#[test]
fn list_of_type() {
assert_eq!(
parse(&lex("foobar : list(bool) = [true]").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(Type::ListOf(Box::new(Type::Boolean)).with_position((9, 20))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::List(vec![Expression::Value(
ValueNode::Boolean(true)
)
.with_position((23, 27))])))
.with_position((22, 28))
))
);
}
#[test]
fn list_exact_type() {
assert_eq!(
parse(&lex("foobar : [bool, str] = [true, '42']").unwrap()).unwrap()[0],
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(Type::ListExact(vec![Type::Boolean, Type::String]).with_position((9, 21))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::List(vec![
Expression::Value(ValueNode::Boolean(true)).with_position((24, 28)),
Expression::Value(ValueNode::String("42".to_string())).with_position((30, 34))
])))
.with_position((23, 35))
),)
.with_position((0, 35))
);
}
#[test]
fn function_type() {
assert_eq!(
parse(&lex("foobar : () -> any = some_function").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(
Type::Function {
parameter_types: vec![],
return_type: Box::new(Type::Any)
}
.with_position((9, 19))
),
AssignmentOperator::Assign,
Statement::Expression(Expression::Identifier(Identifier::new("some_function")))
.with_position((21, 34))
),)
);
}
#[test]
fn function_call() {
assert_eq!(
parse(&lex("output()").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::FunctionCall(FunctionCall::new(
Expression::Identifier(Identifier::new("output")).with_position((0, 6)),
Vec::with_capacity(0),
)))
)
}
#[test]
fn range() {
assert_eq!(
parse(&lex("1..10").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Range(1..10)))
)
}
#[test]
fn function() {
assert_eq!(
parse(&lex("(x: int) : int { x }").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Function {
parameters: vec![(Identifier::new("x"), Type::Integer.with_position((4, 7)))],
return_type: Type::Integer.with_position((11, 15)),
body: Block::new(vec![Statement::Expression(Expression::Identifier(
Identifier::new("x")
),)
.with_position((17, 18))])
.with_position((0, 20))
}),)
)
}
#[test]
fn r#if() {
assert_eq!(
parse(&lex("if true { 'foo' }").unwrap()).unwrap()[0].node,
Statement::IfElse(IfElse::new(
Expression::Value(ValueNode::Boolean(true)).with_position((3, 8)),
Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("foo".to_string())
),)
.with_position((10, 15))]),
None
),)
);
}
#[test]
fn if_else() {
assert_eq!(
parse(&lex("if true {'foo' } else { 'bar' }").unwrap()).unwrap()[0].node,
Statement::IfElse(IfElse::new(
Expression::Value(ValueNode::Boolean(true)).with_position((3, 8)),
Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("foo".to_string())
),)
.with_position((9, 14))]),
Some(Block::new(vec![Statement::Expression(Expression::Value(
ValueNode::String("bar".to_string())
),)
.with_position((24, 29))]))
),)
)
}
#[test]
fn map() {
assert_eq!(
parse(&lex("{ foo = 'bar' }").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Map(vec![(
Identifier::new("foo"),
None,
Expression::Value(ValueNode::String("bar".to_string())).with_position((8, 13))
)])),)
);
assert_eq!(
parse(&lex("{ x = 1, y = 2, }").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Map(vec![
(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(1)).with_position((6, 7))
),
(
Identifier::new("y"),
None,
Expression::Value(ValueNode::Integer(2)).with_position((13, 14))
),
])),)
);
assert_eq!(
parse(&lex("{ x = 1 y = 2 }").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Map(vec![
(
Identifier::new("x"),
None,
Expression::Value(ValueNode::Integer(1)).with_position((6, 7))
),
(
Identifier::new("y"),
None,
Expression::Value(ValueNode::Integer(2)).with_position((12, 13))
),
])),)
);
}
#[test]
fn math() {
assert_eq!(
parse(&lex("1 + 1").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Math(Box::new(Math::Add(
Expression::Value(ValueNode::Integer(1)).with_position((0, 1)),
Expression::Value(ValueNode::Integer(1)).with_position((4, 5))
))),)
);
}
#[test]
fn r#loop() {
assert_eq!(
parse(&lex("loop { 42 }").unwrap()).unwrap()[0].node,
Statement::Loop(Loop::new(vec![Statement::Expression(Expression::Value(
ValueNode::Integer(42)
),)
.with_position((7, 9))]),)
);
assert_eq!(
parse(&lex("loop { if i > 2 { break } else { i += 1 } }").unwrap()).unwrap()[0].node,
Statement::Loop(Loop::new(vec![Statement::IfElse(IfElse::new(
Expression::Logic(Box::new(Logic::Greater(
Expression::Identifier(Identifier::new("i")).with_position((10, 11)),
Expression::Value(ValueNode::Integer(2)).with_position((14, 15))
)))
.with_position((10, 15)),
Block::new(vec![Statement::Break.with_position((18, 24))]),
Some(Block::new(vec![Statement::Assignment(Assignment::new(
Identifier::new("i").with_position((33, 34)),
None,
AssignmentOperator::AddAssign,
Statement::Expression(Expression::Value(ValueNode::Integer(1)))
.with_position((38, 39))
))
.with_position((33, 39))]))
),)
.with_position((7, 42))]))
);
}
#[test]
fn block() {
assert_eq!(
parse(&lex("{ x }").unwrap()).unwrap()[0].node,
Statement::Block(Block::new(vec![Statement::Expression(
Expression::Identifier(Identifier::new("x")),
)
.with_position((2, 3))]),)
);
assert_eq!(
parse(
&lex("
{
x;
y;
z
}
")
.unwrap()
)
.unwrap()[0]
.node,
Statement::Block(Block::new(vec![
Statement::Expression(Expression::Identifier(Identifier::new("x")))
.with_position((39, 40)),
Statement::Expression(Expression::Identifier(Identifier::new("y")))
.with_position((62, 63)),
Statement::Expression(Expression::Identifier(Identifier::new("z")))
.with_position((85, 86)),
]),)
);
assert_eq!(
parse(
&lex("
{
1 == 1
z
}
")
.unwrap()
)
.unwrap()[0]
.node,
Statement::Block(Block::new(vec![
Statement::Expression(Expression::Logic(Box::new(Logic::Equal(
Expression::Value(ValueNode::Integer(1)).with_position((39, 40)),
Expression::Value(ValueNode::Integer(1)).with_position((44, 45))
))),)
.with_position((39, 45)),
Statement::Expression(Expression::Identifier(Identifier::new("z")))
.with_position((66, 67)),
]),)
);
}
#[test]
fn identifier() {
assert_eq!(
parse(&lex("x").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Identifier(Identifier::new("x")))
);
assert_eq!(
parse(&lex("foobar").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Identifier(Identifier::new("foobar")))
);
assert_eq!(
parse(&lex("HELLO").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Identifier(Identifier::new("HELLO")))
);
}
#[test]
fn assignment() {
assert_eq!(
parse(&lex("foobar = 1").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
None,
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::Integer(1)))
.with_position((9, 10))
),)
);
}
#[test]
fn assignment_with_type() {
assert_eq!(
parse(&lex("foobar: int = 1").unwrap()).unwrap()[0].node,
Statement::Assignment(Assignment::new(
Identifier::new("foobar").with_position((0, 6)),
Some(Type::Integer.with_position((8, 12))),
AssignmentOperator::Assign,
Statement::Expression(Expression::Value(ValueNode::Integer(1)))
.with_position((14, 15))
),)
);
}
#[test]
fn logic() {
assert_eq!(
parse(&lex("x == 1").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Logic(Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("x")).with_position((0, 1)),
Expression::Value(ValueNode::Integer(1)).with_position((5, 6)),
))),)
);
assert_eq!(
parse(&lex("(x == 1) && (y == 2)").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Logic(Box::new(Logic::And(
Expression::Logic(Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("x")).with_position((1, 2)),
Expression::Value(ValueNode::Integer(1)).with_position((6, 7)),
)))
.with_position((1, 7)),
Expression::Logic(Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("y")).with_position((13, 14)),
Expression::Value(ValueNode::Integer(2)).with_position((18, 19)),
)))
.with_position((13, 19)),
))),)
);
assert_eq!(
parse(&lex("(x == 1) && (y == 2) && true").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Logic(Box::new(Logic::And(
Expression::Logic(Box::new(Logic::And(
Expression::Logic(Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("x")).with_position((1, 2)),
Expression::Value(ValueNode::Integer(1)).with_position((6, 7))
)))
.with_position((1, 7)),
Expression::Logic(Box::new(Logic::Equal(
Expression::Identifier(Identifier::new("y")).with_position((13, 14)),
Expression::Value(ValueNode::Integer(2)).with_position((18, 19))
)))
.with_position((13, 19)),
)))
.with_position((0, 21)),
Expression::Value(ValueNode::Boolean(true)).with_position((24, 28))
))),)
);
}
#[test]
fn list() {
assert_eq!(
parse(&lex("[]").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::List(Vec::with_capacity(0))),)
);
assert_eq!(
parse(&lex("[42]").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::List(vec![Expression::Value(
ValueNode::Integer(42)
)
.with_position((1, 3))])),)
);
assert_eq!(
parse(&lex("[42, 'foo', 'bar', [1, 2, 3,]]").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::List(vec![
Expression::Value(ValueNode::Integer(42)).with_position((1, 3)),
Expression::Value(ValueNode::String("foo".to_string())).with_position((5, 10)),
Expression::Value(ValueNode::String("bar".to_string())).with_position((12, 17)),
Expression::Value(ValueNode::List(vec![
Expression::Value(ValueNode::Integer(1)).with_position((20, 21)),
Expression::Value(ValueNode::Integer(2)).with_position((23, 24)),
Expression::Value(ValueNode::Integer(3)).with_position((26, 27)),
]))
.with_position((19, 29))
])),)
);
}
#[test]
fn r#true() {
assert_eq!(
parse(&lex("true").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Boolean(true)))
);
}
#[test]
fn r#false() {
assert_eq!(
parse(&lex("false").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Boolean(false)))
);
}
#[test]
fn positive_float() {
assert_eq!(
parse(&lex("0.0").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(0.0)))
);
assert_eq!(
parse(&lex("42.0").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(42.0)))
);
let max_float = f64::MAX.to_string() + ".0";
assert_eq!(
parse(&lex(&max_float).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(f64::MAX)))
);
let min_positive_float = f64::MIN_POSITIVE.to_string();
assert_eq!(
parse(&lex(&min_positive_float).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(f64::MIN_POSITIVE)),)
);
}
#[test]
fn negative_float() {
assert_eq!(
parse(&lex("-0.0").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(-0.0)))
);
assert_eq!(
parse(&lex("-42.0").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(-42.0)))
);
let min_float = f64::MIN.to_string() + ".0";
assert_eq!(
parse(&lex(&min_float).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(f64::MIN)))
);
let max_negative_float = format!("-{}", f64::MIN_POSITIVE);
assert_eq!(
parse(&lex(&max_negative_float).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(-f64::MIN_POSITIVE)),)
);
}
#[test]
fn other_float() {
assert_eq!(
parse(&lex("Infinity").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(f64::INFINITY)))
);
assert_eq!(
parse(&lex("-Infinity").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Float(f64::NEG_INFINITY)),)
);
if let Statement::Expression(Expression::Value(ValueNode::Float(float))) =
&parse(&lex("NaN").unwrap()).unwrap()[0].node
{
assert!(float.is_nan());
} else {
panic!("Expected a float.");
}
}
#[test]
fn positive_integer() {
for i in 0..10 {
let source = i.to_string();
let tokens = lex(&source).unwrap();
let statements = parse(&tokens).unwrap();
assert_eq!(
statements[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(i)))
)
}
assert_eq!(
parse(&lex("42").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(42)))
);
let maximum_integer = i64::MAX.to_string();
assert_eq!(
parse(&lex(&maximum_integer).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(i64::MAX)))
);
}
#[test]
fn negative_integer() {
for i in -9..1 {
let source = i.to_string();
let tokens = lex(&source).unwrap();
let statements = parse(&tokens).unwrap();
assert_eq!(
statements[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(i)))
)
}
assert_eq!(
parse(&lex("-42").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(-42)))
);
let minimum_integer = i64::MIN.to_string();
assert_eq!(
parse(&lex(&minimum_integer).unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::Integer(i64::MIN)))
);
}
#[test]
fn double_quoted_string() {
assert_eq!(
parse(&lex("\"\"").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("".to_string())))
);
assert_eq!(
parse(&lex("\"42\"").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("42".to_string())),)
);
assert_eq!(
parse(&lex("\"foobar\"").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("foobar".to_string())),)
);
}
#[test]
fn single_quoted_string() {
assert_eq!(
parse(&lex("''").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("".to_string())))
);
assert_eq!(
parse(&lex("'42'").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("42".to_string())),)
);
assert_eq!(
parse(&lex("'foobar'").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("foobar".to_string())),)
);
}
#[test]
fn grave_quoted_string() {
assert_eq!(
parse(&lex("``").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("".to_string())))
);
assert_eq!(
parse(&lex("`42`").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("42".to_string())),)
);
assert_eq!(
parse(&lex("`foobar`").unwrap()).unwrap()[0].node,
Statement::Expression(Expression::Value(ValueNode::String("foobar".to_string())),)
);
}
}