1
0
dust/dust-lang/src/lexer.rs

1203 lines
32 KiB
Rust

//! Lexing tools.
//!
//! This module provides two lexing options:
//! - [`lex`], which lexes the entire input and returns a vector of tokens and their positions
//! - [`Lexer`], which lexes the input a token at a time
use std::{
error::Error,
fmt::{self, Display, Formatter},
};
use crate::{Span, Token};
/// Lexes the input and return a vector of tokens and their positions.
///
/// # Examples
/// ```
/// # use dust_lang::*;
/// let input = "x = 1 + 2";
/// let tokens = lex(input).unwrap();
///
/// assert_eq!(
/// tokens,
/// [
/// (Token::Identifier("x"), (0, 1)),
/// (Token::Equal, (2, 3)),
/// (Token::Integer("1"), (4, 5)),
/// (Token::Plus, (6, 7)),
/// (Token::Integer("2"), (8, 9)),
/// (Token::Eof, (9, 9)),
/// ]
/// );
/// ```
pub fn lex<'chars, 'src: 'chars>(input: &'src str) -> Result<Vec<(Token<'chars>, Span)>, LexError> {
let mut lexer = Lexer::new();
let mut tokens = Vec::new();
loop {
let (token, span) = lexer.next_token(input)?;
let is_eof = matches!(token, Token::Eof);
tokens.push((token, span));
if is_eof {
break;
}
}
Ok(tokens)
}
#[derive(Debug, Clone)]
/// Low-level tool for lexing a single token at a time.
///
/// **Note**: It is a logic error to call `next_token` with different inputs.
///
/// # Examples
/// ```
/// # use dust_lang::*;
/// let input = "x = 1 + 2";
/// let mut lexer = Lexer::new();
/// let mut tokens = Vec::new();
///
/// loop {
/// let (token, span) = lexer.next_token(input).unwrap();
/// let is_eof = matches!(token, Token::Eof);
///
/// tokens.push((token, span));
///
/// if is_eof {
/// break;
/// }
/// }
///
/// assert_eq!(
/// tokens,
/// [
/// (Token::Identifier("x"), (0, 1)),
/// (Token::Equal, (2, 3)),
/// (Token::Integer("1"), (4, 5)),
/// (Token::Plus, (6, 7)),
/// (Token::Integer("2"), (8, 9)),
/// (Token::Eof, (9, 9)),
/// ]
/// )
/// ```
pub struct Lexer {
position: usize,
}
impl Lexer {
/// Create a new lexer for the given input.
pub fn new() -> Self {
Lexer { position: 0 }
}
/// Produce the next token.
///
/// It is a logic error to call this method with different inputs.
pub fn next_token<'src>(&mut self, source: &'src str) -> Result<(Token<'src>, Span), LexError> {
self.skip_whitespace(source);
let (token, span) = if let Some(c) = self.peek_char(source) {
match c {
'0'..='9' => self.lex_number(source)?,
'-' => {
let second_char = self.peek_second_char(source);
if let Some('=') = second_char {
self.position += 2;
(Token::MinusEqual, (self.position - 2, self.position))
} else if let Some('0'..='9') = second_char {
self.lex_number(source)?
} else if "-Infinity" == self.peek_chars(source, 9) {
self.position += 9;
(
Token::Float("-Infinity"),
(self.position - 9, self.position),
)
} else {
self.position += 1;
(Token::Minus, (self.position - 1, self.position))
}
}
'a'..='z' | 'A'..='Z' => self.lex_alphanumeric(source)?,
'"' => self.lex_string('"', source)?,
'\'' => self.lex_string('\'', source)?,
'+' => {
if let Some('=') = self.peek_second_char(source) {
self.position += 2;
(Token::PlusEqual, (self.position - 2, self.position))
} else {
self.position += 1;
(Token::Plus, (self.position - 1, self.position))
}
}
'*' => {
self.position += 1;
(Token::Star, (self.position - 1, self.position))
}
'(' => {
self.position += 1;
(Token::LeftParenthesis, (self.position - 1, self.position))
}
')' => {
self.position += 1;
(Token::RightParenthesis, (self.position - 1, self.position))
}
'=' => {
if let Some('=') = self.peek_second_char(source) {
self.position += 2;
(Token::DoubleEqual, (self.position - 2, self.position))
} else {
self.position += 1;
(Token::Equal, (self.position - 1, self.position))
}
}
'[' => {
self.position += 1;
(Token::LeftSquareBrace, (self.position - 1, self.position))
}
']' => {
self.position += 1;
(Token::RightSquareBrace, (self.position - 1, self.position))
}
',' => {
self.position += 1;
(Token::Comma, (self.position - 1, self.position))
}
'.' => {
if let Some('.') = self.peek_second_char(source) {
self.position += 2;
(Token::DoubleDot, (self.position - 2, self.position))
} else {
self.position += 1;
(Token::Dot, (self.position - 1, self.position))
}
}
'>' => {
if let Some('=') = self.peek_second_char(source) {
self.position += 2;
(Token::GreaterEqual, (self.position - 2, self.position))
} else {
self.position += 1;
(Token::Greater, (self.position - 1, self.position))
}
}
'<' => {
if let Some('=') = self.peek_second_char(source) {
self.position += 2;
(Token::LessEqual, (self.position - 2, self.position))
} else {
self.position += 1;
(Token::Less, (self.position - 1, self.position))
}
}
'{' => {
self.position += 1;
(Token::LeftCurlyBrace, (self.position - 1, self.position))
}
'}' => {
self.position += 1;
(Token::RightCurlyBrace, (self.position - 1, self.position))
}
'/' => {
self.position += 1;
(Token::Slash, (self.position - 1, self.position))
}
'%' => {
self.position += 1;
(Token::Percent, (self.position - 1, self.position))
}
'&' => {
if let Some('&') = self.peek_second_char(source) {
self.position += 2;
(Token::DoubleAmpersand, (self.position - 2, self.position))
} else {
self.position += 1;
return Err(LexError::UnexpectedCharacter {
character: c,
position: self.position,
});
}
}
';' => {
self.position += 1;
(Token::Semicolon, (self.position - 1, self.position))
}
'|' => {
if let Some('|') = self.peek_second_char(source) {
self.position += 2;
(Token::DoublePipe, (self.position - 2, self.position))
} else {
self.position += 1;
return Err(LexError::UnexpectedCharacter {
character: c,
position: self.position,
});
}
}
'!' => {
self.position += 1;
(Token::Bang, (self.position - 1, self.position))
}
':' => {
self.position += 1;
(Token::Colon, (self.position - 1, self.position))
}
_ => {
self.position += 1;
return Err(LexError::UnexpectedCharacter {
character: c,
position: self.position,
});
}
}
} else {
(Token::Eof, (self.position, self.position))
};
Ok((token, span))
}
/// Peek at the next token without consuming the source.
pub fn peek_token<'src>(&mut self, source: &'src str) -> Result<(Token<'src>, Span), LexError> {
let token = self.next_token(source)?;
self.position -= token.0.as_str().len();
Ok(token)
}
/// Progress to the next character.
fn next_char(&mut self, source: &str) -> Option<char> {
if let Some(c) = source[self.position..].chars().next() {
self.position += c.len_utf8();
Some(c)
} else {
None
}
}
/// Skip whitespace characters.
fn skip_whitespace(&mut self, source: &str) {
while let Some(c) = self.peek_char(source) {
if c.is_whitespace() {
self.next_char(source);
} else {
break;
}
}
}
/// Peek at the next character without consuming it.
fn peek_char(&self, source: &str) -> Option<char> {
source[self.position..].chars().next()
}
/// Peek at the second-to-next character without consuming it.
fn peek_second_char(&self, source: &str) -> Option<char> {
source[self.position..].chars().nth(1)
}
/// Peek the next `n` characters without consuming them.
fn peek_chars<'src>(&self, source: &'src str, n: usize) -> &'src str {
let remaining_source = &source[self.position..];
if remaining_source.len() < n {
remaining_source
} else {
&remaining_source[..n]
}
}
/// Lex an integer or float token.
fn lex_number<'src>(&mut self, source: &'src str) -> Result<(Token<'src>, Span), LexError> {
let start_pos = self.position;
let mut is_float = false;
if let Some('-') = self.peek_char(source) {
self.next_char(source);
}
while let Some(c) = self.peek_char(source) {
if c == '.' {
if let Some('0'..='9') = self.peek_second_char(source) {
if !is_float {
self.next_char(source);
}
self.next_char(source);
loop {
let peek_char = self.peek_char(source);
if let Some('0'..='9') = peek_char {
self.next_char(source);
} else if let Some('e') = peek_char {
if let Some('0'..='9') = self.peek_second_char(source) {
self.next_char(source);
self.next_char(source);
} else {
break;
}
} else {
break;
}
}
is_float = true;
} else {
break;
}
}
if c.is_ascii_digit() {
self.next_char(source);
} else {
break;
}
}
let text = &source[start_pos..self.position];
if is_float {
Ok((Token::Float(text), (start_pos, self.position)))
} else {
Ok((Token::Integer(text), (start_pos, self.position)))
}
}
/// Lex an identifier token.
fn lex_alphanumeric<'src>(
&mut self,
source: &'src str,
) -> Result<(Token<'src>, Span), LexError> {
let start_pos = self.position;
while let Some(c) = self.peek_char(source) {
if c.is_ascii_alphanumeric() || c == '_' {
self.next_char(source);
} else {
break;
}
}
let string = &source[start_pos..self.position];
let token = match string {
"Infinity" => Token::Float("Infinity"),
"NaN" => Token::Float("NaN"),
"async" => Token::Async,
"bool" => Token::Bool,
"else" => Token::Else,
"false" => Token::Boolean("false"),
"float" => Token::FloatKeyword,
"if" => Token::If,
"int" => Token::Int,
"is_even" => Token::IsEven,
"is_odd" => Token::IsOdd,
"length" => Token::Length,
"mut" => Token::Mut,
"read_line" => Token::ReadLine,
"struct" => Token::Struct,
"to_string" => Token::ToString,
"true" => Token::Boolean("true"),
"while" => Token::While,
"write_line" => Token::WriteLine,
_ => Token::Identifier(string),
};
Ok((token, (start_pos, self.position)))
}
fn lex_string<'src>(
&mut self,
delimiter: char,
source: &'src str,
) -> Result<(Token<'src>, Span), LexError> {
let start_pos = self.position;
self.next_char(source);
while let Some(c) = self.peek_char(source) {
if c == delimiter {
self.next_char(source);
break;
} else {
self.next_char(source);
}
}
let text = &source[start_pos + 1..self.position - 1];
Ok((Token::String(text), (start_pos, self.position)))
}
}
impl Default for Lexer {
fn default() -> Self {
Self::new()
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum LexError {
UnexpectedCharacter { character: char, position: usize },
}
impl LexError {
pub fn position(&self) -> Span {
match self {
Self::UnexpectedCharacter { position, .. } => (*position, *position),
}
}
}
impl Error for LexError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
Self::UnexpectedCharacter { .. } => None,
}
}
}
impl Display for LexError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::UnexpectedCharacter { character, .. } => {
write!(f, "Unexpected character: '{}'", character)
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn unit_struct() {
let input = "struct Foo";
assert_eq!(
lex(input),
Ok(vec![
(Token::Struct, (0, 6)),
(Token::Identifier("Foo"), (7, 10)),
(Token::Eof, (10, 10)),
])
);
}
#[test]
fn tuple_struct() {
let input = "struct Foo(int, float)";
assert_eq!(
lex(input),
Ok(vec![
(Token::Struct, (0, 6)),
(Token::Identifier("Foo"), (7, 10)),
(Token::LeftParenthesis, (10, 11)),
(Token::Int, (11, 14)),
(Token::Comma, (14, 15)),
(Token::FloatKeyword, (16, 21)),
(Token::RightParenthesis, (21, 22)),
(Token::Eof, (22, 22))
])
);
}
#[test]
fn fields_struct() {
let input = "struct FooBar { foo: int, bar: float }";
assert_eq!(
lex(input),
Ok(vec![
(Token::Struct, (0, 6)),
(Token::Identifier("FooBar"), (7, 13)),
(Token::LeftCurlyBrace, (14, 15)),
(Token::Identifier("foo"), (16, 19)),
(Token::Colon, (19, 20)),
(Token::Int, (21, 24)),
(Token::Comma, (24, 25)),
(Token::Identifier("bar"), (26, 29)),
(Token::Colon, (29, 30)),
(Token::FloatKeyword, (31, 36)),
(Token::RightCurlyBrace, (37, 38)),
(Token::Eof, (38, 38))
])
);
}
#[test]
fn list_index() {
let input = "[1, 2, 3][1]";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftSquareBrace, (0, 1)),
(Token::Integer("1"), (1, 2)),
(Token::Comma, (2, 3)),
(Token::Integer("2"), (4, 5)),
(Token::Comma, (5, 6)),
(Token::Integer("3"), (7, 8)),
(Token::RightSquareBrace, (8, 9)),
(Token::LeftSquareBrace, (9, 10)),
(Token::Integer("1"), (10, 11)),
(Token::RightSquareBrace, (11, 12)),
(Token::Eof, (12, 12)),
])
)
}
#[test]
fn list() {
let input = "[1, 2, 3]";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftSquareBrace, (0, 1)),
(Token::Integer("1"), (1, 2)),
(Token::Comma, (2, 3)),
(Token::Integer("2"), (4, 5)),
(Token::Comma, (5, 6)),
(Token::Integer("3"), (7, 8)),
(Token::RightSquareBrace, (8, 9)),
(Token::Eof, (9, 9)),
])
)
}
#[test]
fn map_field_access() {
let input = "{a = 1, b = 2, c = 3}.c";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftCurlyBrace, (0, 1)),
(Token::Identifier("a"), (1, 2)),
(Token::Equal, (3, 4)),
(Token::Integer("1"), (5, 6)),
(Token::Comma, (6, 7)),
(Token::Identifier("b"), (8, 9)),
(Token::Equal, (10, 11)),
(Token::Integer("2"), (12, 13)),
(Token::Comma, (13, 14)),
(Token::Identifier("c"), (15, 16)),
(Token::Equal, (17, 18)),
(Token::Integer("3"), (19, 20)),
(Token::RightCurlyBrace, (20, 21)),
(Token::Dot, (21, 22)),
(Token::Identifier("c"), (22, 23)),
(Token::Eof, (23, 23)),
])
)
}
#[test]
fn range() {
let input = "0..42";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("0"), (0, 1)),
(Token::DoubleDot, (1, 3)),
(Token::Integer("42"), (3, 5)),
(Token::Eof, (5, 5))
])
);
}
#[test]
fn negate_expression() {
let input = "x = -42; -x";
assert_eq!(
lex(input),
Ok(vec![
(Token::Identifier("x"), (0, 1)),
(Token::Equal, (2, 3)),
(Token::Integer("-42"), (4, 7)),
(Token::Semicolon, (7, 8)),
(Token::Minus, (9, 10)),
(Token::Identifier("x"), (10, 11)),
(Token::Eof, (11, 11))
])
);
}
#[test]
fn not_expression() {
let input = "!true; !false";
assert_eq!(
lex(input),
Ok(vec![
(Token::Bang, (0, 1)),
(Token::Boolean("true"), (1, 5)),
(Token::Semicolon, (5, 6)),
(Token::Bang, (7, 8)),
(Token::Boolean("false"), (8, 13)),
(Token::Eof, (13, 13))
])
);
}
#[test]
fn if_else() {
let input = "if x < 10 { x + 1 } else { x }";
assert_eq!(
lex(input),
Ok(vec![
(Token::If, (0, 2)),
(Token::Identifier("x"), (3, 4)),
(Token::Less, (5, 6)),
(Token::Integer("10"), (7, 9)),
(Token::LeftCurlyBrace, (10, 11)),
(Token::Identifier("x"), (12, 13)),
(Token::Plus, (14, 15)),
(Token::Integer("1"), (16, 17)),
(Token::RightCurlyBrace, (18, 19)),
(Token::Else, (20, 24)),
(Token::LeftCurlyBrace, (25, 26)),
(Token::Identifier("x"), (27, 28)),
(Token::RightCurlyBrace, (29, 30)),
(Token::Eof, (30, 30)),
])
)
}
#[test]
fn while_loop() {
let input = "while x < 10 { x += 1 }";
assert_eq!(
lex(input),
Ok(vec![
(Token::While, (0, 5)),
(Token::Identifier("x"), (6, 7)),
(Token::Less, (8, 9)),
(Token::Integer("10"), (10, 12)),
(Token::LeftCurlyBrace, (13, 14)),
(Token::Identifier("x"), (15, 16)),
(Token::PlusEqual, (17, 19)),
(Token::Integer("1"), (20, 21)),
(Token::RightCurlyBrace, (22, 23)),
(Token::Eof, (23, 23)),
])
)
}
#[test]
fn add_assign() {
let input = "x += 42";
assert_eq!(
lex(input),
Ok(vec![
(Token::Identifier("x"), (0, 1)),
(Token::PlusEqual, (2, 4)),
(Token::Integer("42"), (5, 7)),
(Token::Eof, (7, 7)),
])
)
}
#[test]
fn or() {
let input = "true || false";
assert_eq!(
lex(input),
Ok(vec![
(Token::Boolean("true"), (0, 4)),
(Token::DoublePipe, (5, 7)),
(Token::Boolean("false"), (8, 13)),
(Token::Eof, (13, 13)),
])
)
}
#[test]
fn block() {
let input = "{ x = 42; y = 'foobar' }";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftCurlyBrace, (0, 1)),
(Token::Identifier("x"), (2, 3)),
(Token::Equal, (4, 5)),
(Token::Integer("42"), (6, 8)),
(Token::Semicolon, (8, 9)),
(Token::Identifier("y"), (10, 11)),
(Token::Equal, (12, 13)),
(Token::String("foobar"), (14, 22)),
(Token::RightCurlyBrace, (23, 24)),
(Token::Eof, (24, 24)),
])
)
}
#[test]
fn equal() {
let input = "42 == 42";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("42"), (0, 2)),
(Token::DoubleEqual, (3, 5)),
(Token::Integer("42"), (6, 8)),
(Token::Eof, (8, 8)),
])
)
}
#[test]
fn modulo() {
let input = "42 % 2";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("42"), (0, 2)),
(Token::Percent, (3, 4)),
(Token::Integer("2"), (5, 6)),
(Token::Eof, (6, 6)),
])
)
}
#[test]
fn divide() {
let input = "42 / 2";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("42"), (0, 2)),
(Token::Slash, (3, 4)),
(Token::Integer("2"), (5, 6)),
(Token::Eof, (6, 6)),
])
)
}
#[test]
fn map() {
let input = "{ x = 42, y = 'foobar' }";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftCurlyBrace, (0, 1)),
(Token::Identifier("x"), (2, 3)),
(Token::Equal, (4, 5)),
(Token::Integer("42"), (6, 8)),
(Token::Comma, (8, 9)),
(Token::Identifier("y"), (10, 11)),
(Token::Equal, (12, 13)),
(Token::String("foobar"), (14, 22)),
(Token::RightCurlyBrace, (23, 24)),
(Token::Eof, (24, 24)),
])
)
}
#[test]
fn greater_than() {
let input = ">";
assert_eq!(
lex(input),
Ok(vec![(Token::Greater, (0, 1)), (Token::Eof, (1, 1))])
)
}
#[test]
fn greater_than_or_equal() {
let input = ">=";
assert_eq!(
lex(input),
Ok(vec![(Token::GreaterEqual, (0, 2)), (Token::Eof, (2, 2))])
)
}
#[test]
fn less_than() {
let input = "<";
assert_eq!(
lex(input),
Ok(vec![(Token::Less, (0, 1)), (Token::Eof, (1, 1))])
)
}
#[test]
fn less_than_or_equal() {
let input = "<=";
assert_eq!(
lex(input),
Ok(vec![(Token::LessEqual, (0, 2)), (Token::Eof, (2, 2))])
)
}
#[test]
fn infinity() {
let input = "Infinity";
assert_eq!(
lex(input),
Ok(vec![
(Token::Float("Infinity"), (0, 8)),
(Token::Eof, (8, 8)),
])
)
}
#[test]
fn negative_infinity() {
let input = "-Infinity";
assert_eq!(
lex(input),
Ok(vec![
(Token::Float("-Infinity"), (0, 9)),
(Token::Eof, (9, 9)),
])
)
}
#[test]
fn nan() {
let input = "NaN";
assert!(lex(input).is_ok_and(|tokens| tokens[0].0 == Token::Float("NaN")));
}
#[test]
fn complex_float() {
let input = "42.42e42";
assert_eq!(
lex(input),
Ok(vec![
(Token::Float("42.42e42"), (0, 8)),
(Token::Eof, (8, 8)),
])
)
}
#[test]
fn max_integer() {
let input = "9223372036854775807";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("9223372036854775807"), (0, 19)),
(Token::Eof, (19, 19)),
])
)
}
#[test]
fn min_integer() {
let input = "-9223372036854775808";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("-9223372036854775808"), (0, 20)),
(Token::Eof, (20, 20)),
])
)
}
#[test]
fn subtract_negative_integers() {
let input = "-42 - -42";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("-42"), (0, 3)),
(Token::Minus, (4, 5)),
(Token::Integer("-42"), (6, 9)),
(Token::Eof, (9, 9)),
])
)
}
#[test]
fn negative_integer() {
let input = "-42";
assert_eq!(
lex(input),
Ok(vec![(Token::Integer("-42"), (0, 3)), (Token::Eof, (3, 3))])
)
}
#[test]
fn read_line() {
let input = "read_line()";
assert_eq!(
lex(input),
Ok(vec![
(Token::ReadLine, (0, 9)),
(Token::LeftParenthesis, (9, 10)),
(Token::RightParenthesis, (10, 11)),
(Token::Eof, (11, 11)),
])
)
}
#[test]
fn write_line() {
let input = "write_line('Hello, world!')";
assert_eq!(
lex(input),
Ok(vec![
(Token::WriteLine, (0, 10)),
(Token::LeftParenthesis, (10, 11)),
(Token::String("Hello, world!"), (11, 26)),
(Token::RightParenthesis, (26, 27)),
(Token::Eof, (27, 27)),
])
)
}
#[test]
fn string_concatenation() {
let input = "'Hello, ' + 'world!'";
assert_eq!(
lex(input),
Ok(vec![
(Token::String("Hello, "), (0, 9)),
(Token::Plus, (10, 11)),
(Token::String("world!"), (12, 20)),
(Token::Eof, (20, 20)),
])
)
}
#[test]
fn string() {
let input = "'Hello, world!'";
assert_eq!(
lex(input),
Ok(vec![
(Token::String("Hello, world!"), (0, 15)),
(Token::Eof, (15, 15)),
])
)
}
#[test]
fn r#true() {
let input = "true";
assert_eq!(
lex(input),
Ok(vec![(Token::Boolean("true"), (0, 4)), (Token::Eof, (4, 4)),])
)
}
#[test]
fn r#false() {
let input = "false";
assert_eq!(
lex(input),
Ok(vec![
(Token::Boolean("false"), (0, 5)),
(Token::Eof, (5, 5))
])
)
}
#[test]
fn property_access_function_call() {
let input = "42.is_even()";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("42"), (0, 2)),
(Token::Dot, (2, 3)),
(Token::IsEven, (3, 10)),
(Token::LeftParenthesis, (10, 11)),
(Token::RightParenthesis, (11, 12)),
(Token::Eof, (12, 12)),
])
)
}
#[test]
fn empty() {
let input = "";
assert_eq!(lex(input), Ok(vec![(Token::Eof, (0, 0))]))
}
#[test]
fn reserved_identifier() {
let input = "length";
assert_eq!(
lex(input),
Ok(vec![(Token::Length, (0, 6)), (Token::Eof, (6, 6)),])
)
}
#[test]
fn square_braces() {
let input = "[]";
assert_eq!(
lex(input),
Ok(vec![
(Token::LeftSquareBrace, (0, 1)),
(Token::RightSquareBrace, (1, 2)),
(Token::Eof, (2, 2)),
])
)
}
#[test]
fn small_float() {
let input = "1.23";
assert_eq!(
lex(input),
Ok(vec![(Token::Float("1.23"), (0, 4)), (Token::Eof, (4, 4)),])
)
}
#[test]
#[allow(clippy::excessive_precision)]
fn big_float() {
let input = "123456789.123456789";
assert_eq!(
lex(input),
Ok(vec![
(Token::Float("123456789.123456789"), (0, 19)),
(Token::Eof, (19, 19)),
])
)
}
#[test]
fn add() {
let input = "1 + 2";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("1"), (0, 1)),
(Token::Plus, (2, 3)),
(Token::Integer("2"), (4, 5)),
(Token::Eof, (5, 5)),
])
)
}
#[test]
fn multiply() {
let input = "1 * 2";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("1"), (0, 1)),
(Token::Star, (2, 3)),
(Token::Integer("2"), (4, 5)),
(Token::Eof, (5, 5)),
])
)
}
#[test]
fn add_and_multiply() {
let input = "1 + 2 * 3";
assert_eq!(
lex(input),
Ok(vec![
(Token::Integer("1"), (0, 1)),
(Token::Plus, (2, 3)),
(Token::Integer("2"), (4, 5)),
(Token::Star, (6, 7)),
(Token::Integer("3"), (8, 9)),
(Token::Eof, (9, 9)),
])
);
}
#[test]
fn assignment() {
let input = "a = 1 + 2 * 3";
assert_eq!(
lex(input,),
Ok(vec![
(Token::Identifier("a"), (0, 1)),
(Token::Equal, (2, 3)),
(Token::Integer("1"), (4, 5)),
(Token::Plus, (6, 7)),
(Token::Integer("2"), (8, 9)),
(Token::Star, (10, 11)),
(Token::Integer("3"), (12, 13)),
(Token::Eof, (13, 13)),
])
);
}
}