1
0
dust/dust-lang/src/type.rs

472 lines
14 KiB
Rust

//! Description of a kind of value.
//!
//! Most types are concrete and specific, the exceptions are the Generic and Any types.
//!
//! Generic types are temporary placeholders that describe a type that will be defined later. The
//! interpreter should use the analysis phase to enforce that all Generic types have a concrete
//! type assigned to them before the program is run.
//!
//! The Any type is used in cases where a value's type does not matter. For example, the standard
//! library's "length" function does not care about the type of item in the list, only the list
//! itself. So the input is defined as `[any]`, i.e. `Type::ListOf(Box::new(Type::Any))`.
use std::{
collections::BTreeMap,
fmt::{self, Display, Formatter},
};
use serde::{Deserialize, Serialize};
use crate::Identifier;
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct TypeConflict {
pub expected: Type,
pub actual: Type,
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
/// Description of a kind of value.
///
/// See the [module documentation](index.html) for more information.
pub enum Type {
Any,
Boolean,
Enum {
name: Identifier,
type_parameters: Option<Vec<Type>>,
variants: Vec<(Identifier, Option<Vec<Type>>)>,
},
Float,
Function {
type_parameters: Option<Vec<Type>>,
value_parameters: Option<Vec<(Identifier, Type)>>,
return_type: Option<Box<Type>>,
},
Generic {
identifier: Identifier,
concrete_type: Option<Box<Type>>,
},
Integer,
List {
item_type: Box<Type>,
length: usize,
},
ListOf {
item_type: Box<Type>,
},
Map(BTreeMap<Identifier, Type>),
Number,
Range,
String,
Struct(StructType),
}
impl Type {
/// Returns a concrete type, either the type itself or the concrete type of a generic type.
pub fn concrete_type(&self) -> &Type {
match self {
Type::Generic {
concrete_type: Some(concrete_type),
..
} => concrete_type.concrete_type(),
_ => self,
}
}
/// Checks that the type is compatible with another type.
pub fn check(&self, other: &Type) -> Result<(), TypeConflict> {
match (self.concrete_type(), other.concrete_type()) {
(Type::Any, _)
| (_, Type::Any)
| (Type::Boolean, Type::Boolean)
| (Type::Float, Type::Float)
| (Type::Integer, Type::Integer)
| (Type::Range, Type::Range)
| (Type::String, Type::String) => return Ok(()),
(
Type::Generic {
concrete_type: left,
..
},
Type::Generic {
concrete_type: right,
..
},
) => match (left, right) {
(Some(left), Some(right)) => {
if left.check(right).is_ok() {
return Ok(());
}
}
(None, None) => {
return Ok(());
}
_ => {}
},
(Type::Generic { concrete_type, .. }, other)
| (other, Type::Generic { concrete_type, .. }) => {
if let Some(concrete_type) = concrete_type {
if other == concrete_type.as_ref() {
return Ok(());
}
}
}
(Type::Struct(left_struct_type), Type::Struct(right_struct_type)) => {
if left_struct_type == right_struct_type {
return Ok(());
}
}
(
Type::List {
item_type: left_type,
length: left_length,
},
Type::List {
item_type: right_type,
length: right_length,
},
) => {
if left_length != right_length {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
if left_type.check(right_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
return Ok(());
}
(
Type::ListOf {
item_type: left_type,
},
Type::ListOf {
item_type: right_type,
},
) => {
if left_type.check(right_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
(
Type::List {
item_type: list_item_type,
..
},
Type::ListOf {
item_type: list_of_item_type,
},
)
| (
Type::ListOf {
item_type: list_of_item_type,
},
Type::List {
item_type: list_item_type,
..
},
) => {
// TODO: This is a hack, remove it.
if let Type::Any = **list_of_item_type {
return Ok(());
}
if list_item_type.check(list_of_item_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
(
Type::Function {
type_parameters: left_type_parameters,
value_parameters: left_value_parameters,
return_type: left_return,
},
Type::Function {
type_parameters: right_type_parameters,
value_parameters: right_value_parameters,
return_type: right_return,
},
) => {
if left_return == right_return {
for (left_parameter, right_parameter) in left_type_parameters
.iter()
.zip(right_type_parameters.iter())
{
if left_parameter != right_parameter {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
for (left_parameter, right_parameter) in left_value_parameters
.iter()
.zip(right_value_parameters.iter())
{
if left_parameter != right_parameter {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
return Ok(());
}
}
(Type::Map(left), Type::Map(right)) => {
if left == right {
return Ok(());
}
}
(Type::Number, Type::Number | Type::Integer | Type::Float)
| (Type::Integer | Type::Float, Type::Number) => {
return Ok(());
}
_ => {}
}
Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
})
}
}
impl Display for Type {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Type::Any => write!(f, "any"),
Type::Boolean => write!(f, "bool"),
Type::Enum { variants, .. } => {
write!(f, "enum ")?;
write!(f, " {{")?;
for (identifier, types) in variants {
writeln!(f, "{identifier}")?;
if let Some(types) = types {
write!(f, "(")?;
for r#type in types {
write!(f, "{}", r#type)?;
}
}
write!(f, ")")?;
}
write!(f, "}}")
}
Type::Float => write!(f, "float"),
Type::Generic { concrete_type, .. } => {
match concrete_type.clone().map(|r#box| *r#box) {
Some(Type::Generic { identifier, .. }) => write!(f, "{identifier}"),
Some(concrete_type) => write!(f, "implied to be {concrete_type}"),
None => write!(f, "unknown"),
}
}
Type::Integer => write!(f, "int"),
Type::List { item_type, length } => write!(f, "[{item_type}; {length}]"),
Type::ListOf { item_type } => write!(f, "list_of({item_type})"),
Type::Map(map) => {
write!(f, "{{ ")?;
for (index, (key, r#type)) in map.iter().enumerate() {
write!(f, "{key}: {type}")?;
if index != map.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, " }}")
}
Type::Number => write!(f, "num"),
Type::Range => write!(f, "range"),
Type::String => write!(f, "str"),
Type::Function {
type_parameters,
value_parameters,
return_type,
} => {
write!(f, "fn ")?;
if let Some(type_parameters) = type_parameters {
write!(f, "<")?;
for identifier in type_parameters {
write!(f, "{}, ", identifier)?;
}
write!(f, ">")?;
}
write!(f, "(")?;
if let Some(value_parameters) = value_parameters {
for (identifier, r#type) in value_parameters {
write!(f, "{identifier}: {type}")?;
}
}
write!(f, ")")?;
if let Some(r#type) = return_type {
write!(f, " -> {type}")
} else {
Ok(())
}
}
Type::Struct(struct_type) => write!(f, "{struct_type}"),
}
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum StructType {
Unit {
name: Identifier,
},
Tuple {
name: Identifier,
fields: Vec<Type>,
},
Fields {
name: Identifier,
fields: Vec<(Identifier, Type)>,
},
}
impl Display for StructType {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
StructType::Unit { name } => write!(f, "struct {name}"),
StructType::Tuple { name, fields } => {
write!(f, "struct {name}(")?;
for (index, r#type) in fields.iter().enumerate() {
write!(f, "{type}")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, ")")
}
StructType::Fields { name, fields } => {
write!(f, "struct {name} {{")?;
for (index, (identifier, r#type)) in fields.iter().enumerate() {
write!(f, "{identifier}: {type}")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "}}")
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_same_types() {
assert_eq!(Type::Any.check(&Type::Any), Ok(()));
assert_eq!(Type::Boolean.check(&Type::Boolean), Ok(()));
assert_eq!(Type::Float.check(&Type::Float), Ok(()));
assert_eq!(Type::Integer.check(&Type::Integer), Ok(()));
assert_eq!(
Type::List {
item_type: Box::new(Type::Boolean),
length: 42
}
.check(&Type::List {
item_type: Box::new(Type::Boolean),
length: 42
}),
Ok(())
);
let mut map = BTreeMap::new();
map.insert(Identifier::from("x"), Type::Integer);
map.insert(Identifier::from("y"), Type::String);
map.insert(Identifier::from("z"), Type::Map(map.clone()));
assert_eq!(Type::Map(map.clone()).check(&Type::Map(map)), Ok(()));
assert_eq!(Type::Range.check(&Type::Range), Ok(()));
assert_eq!(Type::String.check(&Type::String), Ok(()));
}
#[test]
fn errors() {
let foo = Type::Integer;
let bar = Type::String;
assert_eq!(
foo.check(&bar),
Err(TypeConflict {
actual: bar.clone(),
expected: foo.clone()
})
);
assert_eq!(
bar.check(&foo),
Err(TypeConflict {
actual: foo.clone(),
expected: bar.clone()
})
);
let types = [
Type::Boolean,
Type::Float,
Type::Integer,
Type::List {
item_type: Box::new(Type::Integer),
length: 42,
},
Type::Map(BTreeMap::new()),
Type::Range,
Type::String,
];
for left in types.clone() {
for right in types.clone() {
if left == right {
continue;
}
assert_eq!(
left.check(&right),
Err(TypeConflict {
actual: right.clone(),
expected: left.clone()
})
);
}
}
}
}