1
0
dust/src/abstract_tree/function_call.rs

157 lines
5.1 KiB
Rust

use serde::{Deserialize, Serialize};
use tree_sitter::Node;
use crate::{AbstractTree, Error, Expression, FunctionExpression, Map, Result, Type, Value};
#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, PartialOrd, Ord)]
pub struct FunctionCall {
function_expression: FunctionExpression,
arguments: Vec<Expression>,
}
impl FunctionCall {
pub fn new(function_expression: FunctionExpression, arguments: Vec<Expression>) -> Self {
Self {
function_expression,
arguments,
}
}
}
impl AbstractTree for FunctionCall {
fn from_syntax_node(source: &str, node: Node, context: &mut Map) -> Result<Self> {
Error::expect_syntax_node(source, "function_call", node)?;
let function_node = node.child(0).unwrap();
let function_expression =
FunctionExpression::from_syntax_node(source, function_node, context)?;
let mut arguments = Vec::new();
for index in 2..node.child_count() - 1 {
let child = node.child(index).unwrap();
if child.is_named() {
let expression = Expression::from_syntax_node(source, child, context)?;
arguments.push(expression);
}
}
Ok(FunctionCall {
function_expression,
arguments,
})
}
fn check_type(&self, _source: &str, context: &Map) -> Result<()> {
let function_type = self.function_expression.expected_type(context)?;
let mut minimum_parameter_count = 0;
for (index, expression) in self.arguments.iter().enumerate() {
if let Type::Function {
parameter_types, ..
} = &function_type
{
if let Some(r#type) = parameter_types.get(index) {
if let Type::Option(_) = r#type {
} else {
minimum_parameter_count += 1;
}
r#type.check(&expression.expected_type(context)?)?;
}
}
}
if let Type::Function {
parameter_types: _, ..
} = &function_type
{
if self.arguments.len() < minimum_parameter_count {
return Err(Error::ExpectedFunctionArgumentMinimum {
source: "TODO".to_string(),
minumum_expected: minimum_parameter_count,
actual: self.arguments.len(),
});
}
}
Ok(())
}
fn run(&self, source: &str, context: &mut Map) -> Result<Value> {
let (name, value) = match &self.function_expression {
FunctionExpression::Identifier(identifier) => {
let key = identifier.inner();
let variables = context.variables();
if let Some((value, _)) = variables.get(key) {
(Some(key.clone()), value.clone())
} else {
return Err(Error::FunctionIdentifierNotFound(
identifier.inner().clone(),
));
}
}
FunctionExpression::FunctionCall(function_call) => {
(None, function_call.run(source, context)?)
}
FunctionExpression::Value(value_node) => (None, value_node.run(source, context)?),
FunctionExpression::Index(index) => (None, index.run(source, context)?),
FunctionExpression::Yield(r#yield) => (None, r#yield.run(source, context)?),
};
let mut arguments = Vec::with_capacity(self.arguments.len());
for expression in &self.arguments {
let value = expression.run(source, context)?;
arguments.push(value);
}
if let Some(name) = &name {
context.set(name.to_string(), value.clone(), None);
}
value
.as_function()
.map_err(|error| {
println!("{name:?}");
error
})?
.call(name, &arguments, source, context)
}
fn expected_type(&self, context: &Map) -> Result<Type> {
match &self.function_expression {
FunctionExpression::Identifier(identifier) => {
let identifier_type = identifier.expected_type(context)?;
if let Type::Function {
parameter_types: _,
return_type,
} = &identifier_type
{
Ok(*return_type.clone())
} else {
Ok(identifier_type)
}
}
FunctionExpression::FunctionCall(function_call) => function_call.expected_type(context),
FunctionExpression::Value(value_node) => {
let value_type = value_node.expected_type(context)?;
if let Type::Function { return_type, .. } = value_type {
Ok(*return_type)
} else {
Ok(value_type)
}
}
FunctionExpression::Index(index) => index.expected_type(context),
FunctionExpression::Yield(r#yield) => r#yield.expected_type(context),
}
}
}