1
0
dust/dust-lang/src/parse.rs
2024-08-09 06:09:59 -04:00

1056 lines
34 KiB
Rust

//! Parsing tools.
//!
//! This module provides two parsing options:
//! - `parse` convenience function
//! - `Parser` struct, which parses the input a statement at a time
use std::{
collections::{BTreeMap, VecDeque},
error::Error,
fmt::{self, Display, Formatter},
};
use crate::{
abstract_tree::BinaryOperator, built_in_function::BuiltInFunction, token::TokenOwned,
AbstractSyntaxTree, Identifier, LexError, Lexer, Node, Span, Statement, Token, Value,
};
/// Parses the input into an abstract syntax tree.
///
/// # Examples
/// ```
/// # use dust_lang::*;
/// let input = "x = 42";
/// let result = parse(input);
///
/// assert_eq!(
/// result,
/// Ok(AbstractSyntaxTree {
/// nodes: [
/// Node {
/// inner: Statement::Assignment {
/// identifier: Node {
/// inner: Identifier::new("x"),
/// position: (0, 1),
/// },
/// value_node: Box::new(Node {
/// inner: Statement::Constant(Value::integer(42)),
/// position: (4, 6),
/// })
/// },
/// position: (0, 6),
/// }
/// ].into(),
/// }),
/// );
/// ```
pub fn parse(input: &str) -> Result<AbstractSyntaxTree, ParseError> {
let lexer = Lexer::new();
let mut parser = Parser::new(input, lexer);
let mut nodes = VecDeque::new();
loop {
let node = parser.parse()?;
nodes.push_back(node);
if let Token::Eof = parser.current.0 {
break;
}
}
Ok(AbstractSyntaxTree { nodes })
}
/// Low-level tool for parsing the input a statement at a time.
///
/// # Examples
/// ```
/// # use std::collections::VecDeque;
/// # use dust_lang::*;
/// let input = "x = 42";
/// let lexer = Lexer::new();
/// let mut parser = Parser::new(input, lexer);
/// let mut nodes = VecDeque::new();
///
/// loop {
/// let node = parser.parse().unwrap();
///
/// nodes.push_back(node);
///
/// if let Token::Eof = parser.current().0 {
/// break;
/// }
/// }
///
/// assert_eq!(
/// nodes,
/// Into::<VecDeque<Node<Statement>>>::into([
/// Node {
/// inner: Statement::Assignment {
/// identifier: Node {
/// inner: Identifier::new("x"),
/// position: (0, 1),
/// },
/// value_node: Box::new(Node {
/// inner: Statement::Constant(Value::integer(42)),
/// position: (4, 6),
/// }),
/// },
/// position: (0, 6),
/// }
/// ]),
/// );
/// ```
pub struct Parser<'src> {
source: &'src str,
lexer: Lexer,
current: (Token<'src>, Span),
}
impl<'src> Parser<'src> {
pub fn new(source: &'src str, lexer: Lexer) -> Self {
let mut lexer = lexer;
let current = lexer.next_token(source).unwrap_or((Token::Eof, (0, 0)));
Parser {
source,
lexer,
current,
}
}
pub fn parse(&mut self) -> Result<Node<Statement>, ParseError> {
self.parse_node(0)
}
pub fn current(&self) -> &(Token, Span) {
&self.current
}
fn next_token(&mut self) -> Result<(), ParseError> {
let next = self.lexer.next_token(self.source);
self.current = match next {
Ok((token, position)) => (token, position),
Err(lex_error) => {
let position = {
self.next_token()?;
self.current.1
};
return Err(ParseError::LexError {
error: lex_error,
position,
});
}
};
Ok(())
}
fn parse_node(&mut self, precedence: u8) -> Result<Node<Statement>, ParseError> {
let left_node = self.parse_primary()?;
let left_start = left_node.position.0;
if precedence < self.current_precedence() {
match &self.current {
(Token::Dot, _) => {
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::PropertyAccess(Box::new(left_node), Box::new(right_node)),
(left_start, right_end),
));
}
(Token::Equal, _) => {
self.next_token()?;
let identifier = if let Statement::Identifier(identifier) = left_node.inner {
identifier
} else {
todo!()
};
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::Assignment {
identifier: Node::new(identifier, left_node.position),
value_node: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::Greater, _) => {
let operator = Node::new(BinaryOperator::Greater, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::GreaterEqual, _) => {
let operator = Node::new(BinaryOperator::GreaterOrEqual, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::Less, _) => {
let operator = Node::new(BinaryOperator::Less, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::LessEqual, _) => {
let operator = Node::new(BinaryOperator::LessOrEqual, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::Minus, _) => {
let operator = Node::new(BinaryOperator::Subtract, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::Plus, _) => {
let operator = Node::new(BinaryOperator::Add, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
(Token::Star, _) => {
let operator = Node::new(BinaryOperator::Multiply, self.current.1);
self.next_token()?;
let right_node = self.parse_node(self.current_precedence())?;
let right_end = right_node.position.1;
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left_node),
operator,
right: Box::new(right_node),
},
(left_start, right_end),
));
}
_ => {}
}
}
Ok(left_node)
}
fn parse_primary(&mut self) -> Result<Node<Statement>, ParseError> {
match self.current {
(Token::Boolean(boolean), span) => {
self.next_token()?;
Ok(Node::new(
Statement::Constant(Value::boolean(boolean)),
span,
))
}
(Token::Float(float), span) => {
self.next_token()?;
Ok(Node::new(Statement::Constant(Value::float(float)), span))
}
(Token::Integer(int), span) => {
self.next_token()?;
Ok(Node::new(Statement::Constant(Value::integer(int)), span))
}
(Token::Identifier(text), span) => {
self.next_token()?;
Ok(Node::new(
Statement::Identifier(Identifier::new(text)),
span,
))
}
(Token::String(string), span) => {
self.next_token()?;
Ok(Node::new(Statement::Constant(Value::string(string)), span))
}
(Token::LeftCurlyBrace, left_span) => {
self.next_token()?;
let mut nodes = Vec::new();
loop {
if let (Token::RightCurlyBrace, right_span) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::Map(nodes),
(left_span.0, right_span.1),
));
}
let identifier = if let (Token::Identifier(text), right_span) = self.current {
self.next_token()?;
Node::new(Identifier::new(text), right_span)
} else {
return Err(ParseError::ExpectedIdentifier {
actual: self.current.0.to_owned(),
position: self.current.1,
});
};
if let Token::Equal = self.current.0 {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenOwned::Equal,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let current_value_node = self.parse_node(0)?;
nodes.push((identifier, current_value_node));
if let Token::Comma = self.current.0 {
self.next_token()?;
}
}
}
(Token::LeftParenthesis, left_span) => {
self.next_token()?;
let node = self.parse_node(0)?;
if let (Token::RightParenthesis, right_span) = self.current {
self.next_token()?;
Ok(Node::new(node.inner, (left_span.0, right_span.1)))
} else {
Err(ParseError::ExpectedToken {
expected: TokenOwned::RightParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
})
}
}
(Token::LeftSquareBrace, left_span) => {
self.next_token()?;
let mut nodes = Vec::new();
loop {
if let (Token::RightSquareBrace, right_span) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::List(nodes),
(left_span.0, right_span.1),
));
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
if let Ok(instruction) = self.parse_node(0) {
nodes.push(instruction);
} else {
return Err(ParseError::ExpectedToken {
expected: TokenOwned::RightSquareBrace,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
}
}
(
Token::IsEven | Token::IsOdd | Token::Length | Token::ReadLine | Token::WriteLine,
left_span,
) => {
let function = match self.current.0 {
Token::IsEven => BuiltInFunction::IsEven,
Token::IsOdd => BuiltInFunction::IsOdd,
Token::Length => BuiltInFunction::Length,
Token::ReadLine => BuiltInFunction::ReadLine,
Token::WriteLine => BuiltInFunction::WriteLine,
_ => unreachable!(),
};
self.next_token()?;
if let (Token::LeftParenthesis, _) = self.current {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenOwned::LeftParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let mut value_arguments: Option<Vec<Node<Statement>>> = None;
loop {
if let (Token::RightParenthesis, _) = self.current {
self.next_token()?;
break;
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
if let Ok(node) = self.parse_node(0) {
if let Some(ref mut arguments) = value_arguments {
arguments.push(node);
} else {
value_arguments = Some(vec![node]);
}
} else {
return Err(ParseError::ExpectedToken {
expected: TokenOwned::RightParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
}
Ok(Node::new(
Statement::BuiltInFunctionCall {
function,
type_arguments: None,
value_arguments,
},
left_span,
))
}
_ => Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
}),
}
}
fn current_precedence(&self) -> u8 {
match self.current.0 {
Token::Greater | Token::GreaterEqual | Token::Less | Token::LessEqual => 5,
Token::Dot => 4,
Token::Equal => 3,
Token::Star => 2,
Token::Plus => 1,
Token::Minus => 1,
_ => 0,
}
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum ParseError {
LexError {
error: LexError,
position: Span,
},
ExpectedIdentifier {
actual: TokenOwned,
position: (usize, usize),
},
ExpectedToken {
expected: TokenOwned,
actual: TokenOwned,
position: Span,
},
UnexpectedToken {
actual: TokenOwned,
position: Span,
},
}
impl ParseError {
pub fn position(&self) -> Span {
match self {
Self::LexError { position, .. } => *position,
Self::ExpectedIdentifier { position, .. } => *position,
Self::ExpectedToken { position, .. } => *position,
Self::UnexpectedToken { position, .. } => *position,
}
}
}
impl Error for ParseError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
Self::LexError { error, .. } => Some(error),
_ => None,
}
}
}
impl Display for ParseError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::LexError { error, .. } => write!(f, "{}", error),
Self::ExpectedIdentifier { actual, .. } => {
write!(f, "Expected identifier, found {actual}")
}
Self::ExpectedToken {
expected, actual, ..
} => write!(f, "Expected token {expected}, found {actual}"),
Self::UnexpectedToken { actual, .. } => write!(f, "Unexpected token {actual}"),
}
}
}
#[cfg(test)]
mod tests {
use crate::{abstract_tree::BinaryOperator, Identifier};
use super::*;
#[test]
fn map() {
let input = "{ x = 42, y = 'foobar' }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Map(vec![
(
Node::new(Identifier::new("x"), (2, 3)),
Node::new(Statement::Constant(Value::integer(42)), (6, 8))
),
(
Node::new(Identifier::new("y"), (10, 11)),
Node::new(Statement::Constant(Value::string("foobar")), (14, 22))
)
]),
(0, 24)
)]
.into()
})
);
}
#[test]
fn less_than() {
let input = "1 < 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Less, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5))),
},
(0, 5)
)]
.into()
})
);
}
#[test]
fn less_than_or_equal() {
let input = "1 <= 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::LessOrEqual, (2, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6))),
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn greater_than_or_equal() {
let input = "1 >= 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::GreaterOrEqual, (2, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6))),
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn greater_than() {
let input = "1 > 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Greater, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5))),
},
(0, 5)
)]
.into()
})
);
}
#[test]
fn subtract_negative_integers() {
let input = "-1 - -2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Node::new(Statement::Constant(Value::integer(-1)), (0, 2)).into(),
operator: Node::new(BinaryOperator::Subtract, (3, 4)),
right: Node::new(Statement::Constant(Value::integer(-2)), (5, 7)).into()
},
(0, 7)
)]
.into()
})
);
}
#[test]
fn string_concatenation() {
let input = "\"Hello, \" + \"World!\"";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::string("Hello, ")),
(0, 9)
)),
operator: Node::new(BinaryOperator::Add, (10, 11)),
right: Box::new(Node::new(
Statement::Constant(Value::string("World!")),
(12, 20)
))
},
(0, 20)
)]
.into()
})
);
}
#[test]
fn string() {
let input = "\"Hello, World!\"";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Constant(Value::string("Hello, World!")),
(0, 15)
)]
.into()
})
);
}
#[test]
fn boolean() {
let input = "true";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Constant(Value::boolean(true)), (0, 4))].into()
})
);
}
#[test]
fn property_access_function_call() {
let input = "42.is_even()";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::PropertyAccess(
Box::new(Node::new(Statement::Constant(Value::integer(42)), (0, 2))),
Box::new(Node::new(
Statement::BuiltInFunctionCall {
function: BuiltInFunction::IsEven,
type_arguments: None,
value_arguments: None
},
(3, 10)
)),
),
(0, 10),
)]
.into()
})
);
}
#[test]
fn list_access() {
let input = "[1, 2, 3].0";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::PropertyAccess(
Box::new(Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(Statement::Constant(Value::integer(2)), (4, 5)),
Node::new(Statement::Constant(Value::integer(3)), (7, 8)),
]),
(0, 9)
)),
Box::new(Node::new(Statement::Constant(Value::integer(0)), (10, 11))),
),
(0, 11),
)]
.into()
})
);
}
#[test]
fn property_access() {
let input = "a.b";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::PropertyAccess(
Box::new(Node::new(
Statement::Identifier(Identifier::new("a")),
(0, 1)
)),
Box::new(Node::new(
Statement::Identifier(Identifier::new("b")),
(2, 3)
)),
),
(0, 3),
)]
.into()
})
);
}
#[test]
fn complex_list() {
let input = "[1, 1 + 1, 2 + (4 * 10)]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Add, (6, 7)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(8, 9)
))
},
(4, 9)
),
Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(11, 12)
)),
operator: Node::new(BinaryOperator::Add, (13, 14)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(4)),
(16, 17)
)),
operator: Node::new(BinaryOperator::Multiply, (18, 19)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(10)),
(20, 22)
))
},
(15, 23)
))
},
(11, 23)
),
]),
(0, 24),
)]
.into()
})
);
}
#[test]
fn list() {
let input = "[1, 2]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(Statement::Constant(Value::integer(2)), (4, 5)),
]),
(0, 6),
)]
.into()
})
);
}
#[test]
fn empty_list() {
let input = "[]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::List(vec![]), (0, 2))].into()
})
);
}
#[test]
fn float() {
let input = "42.0";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Constant(Value::float(42.0)), (0, 4))].into()
})
);
}
#[test]
fn add() {
let input = "1 + 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Add, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5)),)
},
(0, 5),
)]
.into()
})
);
}
#[test]
fn multiply() {
let input = "1 * 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Multiply, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5)),)
},
(0, 5),
)]
.into()
})
);
}
#[test]
fn add_and_multiply() {
let input = "1 + 2 * 3";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Add, (2, 3)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Multiply, (6, 7)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(3)),
(8, 9)
),)
},
(4, 9)
),)
},
(0, 9),
)]
.into()
})
);
}
#[test]
fn assignment() {
let input = "a = 1 + 2 * 3";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("a"), (0, 1)),
value_node: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Add, (6, 7)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(8, 9)
)),
operator: Node::new(BinaryOperator::Multiply, (10, 11)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(3)),
(12, 13)
),)
},
(8, 13)
),)
},
(4, 13)
),)
},
(0, 13),
)]
.into()
})
);
}
}