dust/dust-lang/src/parser.rs
2024-08-14 04:59:27 -04:00

2680 lines
91 KiB
Rust

//! Parsing tools.
//!
//! This module provides two parsing options:
//! - `parse` convenience function
//! - `Parser` struct, which parses the input a statement at a time
use std::{
collections::VecDeque,
error::Error,
fmt::{self, Display, Formatter},
num::{ParseFloatError, ParseIntError},
str::ParseBoolError,
};
use crate::{
AbstractSyntaxTree, AssignmentOperator, BinaryOperator, BuiltInFunction, DustError, Identifier,
LexError, Lexer, Node, Span, Statement, StructDefinition, Token, TokenKind, TokenOwned, Type,
UnaryOperator, Value,
};
/// Parses the input into an abstract syntax tree.
///
/// # Examples
/// ```
/// # use dust_lang::*;
/// let tree = parse("x + 42").unwrap();
///
/// assert_eq!(
/// tree,
/// AbstractSyntaxTree {
/// nodes: [
/// Node::new(
/// Statement::BinaryOperation {
/// left: Box::new(Node::new(
/// Statement::Identifier(Identifier::new("x")),
/// (0, 1),
/// )),
/// operator: Node::new(
/// BinaryOperator::Add,
/// (2, 3)
/// ),
/// right: Box::new(Node::new(
/// Statement::Constant(Value::integer(42)),
/// (4, 6),
/// ))
/// },
/// (0, 6),
/// )
/// ].into(),
/// },
/// );
/// ```
pub fn parse(source: &str) -> Result<AbstractSyntaxTree, DustError> {
let lexer = Lexer::new();
let mut parser = Parser::new(source, lexer);
let mut nodes = VecDeque::new();
loop {
let node = parser
.parse()
.map_err(|parse_error| DustError::ParseError {
parse_error,
source,
})?;
nodes.push_back(node);
if let Token::Eof = parser.current.0 {
break;
}
}
Ok(AbstractSyntaxTree { nodes })
}
pub fn parse_into<'src>(
source: &'src str,
tree: &mut AbstractSyntaxTree,
) -> Result<(), DustError<'src>> {
let lexer = Lexer::new();
let mut parser = Parser::new(source, lexer);
loop {
let node = parser
.parse()
.map_err(|parse_error| DustError::ParseError {
parse_error,
source,
})?;
tree.nodes.push_back(node);
if let Token::Eof = parser.current.0 {
break;
}
}
Ok(())
}
/// Low-level tool for parsing the input a statement at a time.
///
/// # Examples
/// ```
/// # use std::collections::VecDeque;
/// # use dust_lang::*;
/// let input = "x = 42";
/// let lexer = Lexer::new();
/// let mut parser = Parser::new(input, lexer);
/// let mut nodes = VecDeque::new();
///
/// loop {
/// let node = parser.parse().unwrap();
///
/// nodes.push_back(node);
///
/// if let Token::Eof = parser.current().0 {
/// break;
/// }
/// }
///
/// let tree = AbstractSyntaxTree { nodes };
///
/// ```
pub struct Parser<'src> {
source: &'src str,
lexer: Lexer,
current: (Token<'src>, Span),
mode: ParserMode,
}
impl<'src> Parser<'src> {
pub fn new(source: &'src str, lexer: Lexer) -> Self {
let mut lexer = lexer;
let current = lexer.next_token(source).unwrap_or((Token::Eof, (0, 0)));
Parser {
source,
lexer,
current,
mode: ParserMode::None,
}
}
pub fn current(&self) -> &(Token, Span) {
&self.current
}
pub fn parse(&mut self) -> Result<Node<Statement>, ParseError> {
self.parse_statement(0)
}
fn next_token(&mut self) -> Result<(), ParseError> {
self.current = self.lexer.next_token(self.source)?;
Ok(())
}
fn parse_statement(&mut self, mut precedence: u8) -> Result<Node<Statement>, ParseError> {
// Parse a statement starting from the current node.
let mut left = if self.current.0.is_prefix() {
self.parse_prefix()?
} else {
self.parse_primary()?
};
// While the current token has a higher precedence than the given precedence
while precedence < self.current.0.precedence() {
// Give precedence to postfix operations
left = if self.current.0.is_postfix() {
let statement = self.parse_postfix(left)?;
precedence = self.current.0.precedence();
// Replace the left-hand side with the postfix operation
statement
} else {
// Replace the left-hand side with the infix operation
self.parse_infix(left)?
};
}
log::trace!(
"{}'s precedence is lower than or equal to {}",
self.current.0,
precedence
);
Ok(left)
}
fn parse_statement_in_mode(
&mut self,
mode: ParserMode,
precedence: u8,
) -> Result<Node<Statement>, ParseError> {
let old_mode = self.mode;
self.mode = mode;
let result = self.parse_statement(precedence);
self.mode = old_mode;
result
}
fn parse_prefix(&mut self) -> Result<Node<Statement>, ParseError> {
log::trace!("Parsing {} as prefix operator", self.current.0);
match self.current {
(Token::Bang, position) => {
self.next_token()?;
let operand = Box::new(self.parse_statement(0)?);
let operand_end = operand.position.1;
Ok(Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Not, position),
operand,
},
(position.0, operand_end),
))
}
(Token::Minus, position) => {
self.next_token()?;
let operand = Box::new(self.parse_statement(0)?);
let operand_end = operand.position.1;
Ok(Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Negate, position),
operand,
},
(position.0, operand_end),
))
}
_ => Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
}),
}
}
fn parse_primary(&mut self) -> Result<Node<Statement>, ParseError> {
log::trace!("Parsing {} as primary", self.current.0);
match self.current {
(Token::Async, position) => {
self.next_token()?;
if let Token::LeftCurlyBrace = self.current.0 {
self.next_token()?;
} else {
return Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let mut statements = Vec::new();
loop {
if let Token::RightCurlyBrace = self.current.0 {
let right_end = self.current.1 .1;
self.next_token()?;
return Ok(Node::new(
Statement::AsyncBlock(statements),
(position.0, right_end),
));
}
let statement = self.parse_statement(0)?;
statements.push(statement);
}
}
(Token::Boolean(text), position) => {
self.next_token()?;
let boolean = text
.parse()
.map_err(|error| ParseError::BooleanError { error, position })?;
if let ParserMode::Mutable = self.mode {
Ok(Node::new(
Statement::ConstantMut(Value::boolean_mut(boolean)),
position,
))
} else {
Ok(Node::new(
Statement::Constant(Value::boolean(boolean)),
position,
))
}
}
(Token::Float(text), position) => {
self.next_token()?;
let float = text
.parse()
.map_err(|error| ParseError::FloatError { error, position })?;
Ok(Node::new(
Statement::Constant(Value::float(float)),
position,
))
}
(Token::Identifier(text), position) => {
self.next_token()?;
if let ParserMode::Condition = self.mode {
return Ok(Node::new(
Statement::Identifier(Identifier::new(text)),
position,
));
}
if let Token::LeftCurlyBrace = self.current.0 {
self.next_token()?;
let mut fields = Vec::new();
loop {
if let Token::RightCurlyBrace = self.current.0 {
let right_end = self.current.1 .1;
self.next_token()?;
return Ok(Node::new(
Statement::FieldsStructInstantiation {
name: Node::new(Identifier::new(text), position),
fields,
},
(position.0, right_end),
));
}
let field_name = self.parse_identifier()?;
if let Token::Equal = self.current.0 {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Equal,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let field_value = self.parse_statement(0)?;
fields.push((field_name, field_value));
if let Token::Comma = self.current.0 {
self.next_token()?;
}
}
}
Ok(Node::new(
Statement::Identifier(Identifier::new(text)),
position,
))
}
(Token::Integer(text), position) => {
self.next_token()?;
let integer = text
.parse::<i64>()
.map_err(|error| ParseError::IntegerError { error, position })?;
if let Token::DoubleDot = self.current.0 {
self.next_token()?;
if let Token::Integer(range_end) = self.current.0 {
self.next_token()?;
let range_end = range_end
.parse::<i64>()
.map_err(|error| ParseError::IntegerError { error, position })?;
Ok(Node::new(
Statement::Constant(Value::range(integer..range_end)),
(position.0, self.current.1 .1),
))
} else {
Err(ParseError::ExpectedToken {
expected: TokenKind::Integer,
actual: self.current.0.to_owned(),
position: (position.0, self.current.1 .1),
})
}
} else {
Ok(Node::new(
Statement::Constant(Value::integer(integer)),
position,
))
}
}
(Token::If, position) => {
self.next_token()?;
let condition = Box::new(self.parse_statement_in_mode(ParserMode::Condition, 0)?);
let if_body = Box::new(self.parse_block()?);
if let Token::Else = self.current.0 {
self.next_token()?;
if let Token::If = self.current.0 {
self.next_token()?;
let first_else_if = (
self.parse_statement_in_mode(ParserMode::Condition, 0)?,
self.parse_statement(0)?,
);
let mut else_ifs = vec![first_else_if];
loop {
if let Token::Else = self.current.0 {
self.next_token()?;
} else {
return Ok(Node::new(
Statement::IfElseIf {
condition,
if_body,
else_ifs,
},
position,
));
}
if let Token::If = self.current.0 {
self.next_token()?;
let else_if = (
self.parse_statement_in_mode(ParserMode::Condition, 0)?,
self.parse_statement(0)?,
);
else_ifs.push(else_if);
} else {
let else_body = Box::new(self.parse_block()?);
let else_end = else_body.position.1;
return Ok(Node::new(
Statement::IfElseIfElse {
condition,
if_body,
else_ifs,
else_body,
},
(position.0, else_end),
));
}
}
} else {
let else_body = Box::new(self.parse_block()?);
let else_end = else_body.position.1;
Ok(Node::new(
Statement::IfElse {
condition,
if_body,
else_body,
},
(position.0, else_end),
))
}
} else {
let if_end = if_body.position.1;
self.mode = ParserMode::None;
Ok(Node::new(
Statement::If {
condition,
body: if_body,
},
(position.0, if_end),
))
}
}
(Token::String(string), position) => {
self.next_token()?;
if let ParserMode::Mutable = self.mode {
Ok(Node::new(
Statement::ConstantMut(Value::string_mut(string)),
position,
))
} else {
Ok(Node::new(
Statement::Constant(Value::string(string)),
position,
))
}
}
(Token::LeftCurlyBrace, left_position) => {
self.next_token()?;
// If the next token is a right curly brace, this is an empty map
if let (Token::RightCurlyBrace, right_position) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::Map(Vec::new()),
(left_position.0, right_position.1),
));
}
let first_node = self.parse_statement(0)?;
// Determine whether the new statement is a block or a map
//
// If the first node is an assignment, this might be a map
let mut statement = if let Statement::Assignment {
identifier: left,
operator:
Node {
inner: AssignmentOperator::Assign,
position: operator_position,
},
value: right,
} = first_node.inner
{
// If the current token is a comma or closing brace
if self.current.0 == Token::Comma || self.current.0 == Token::RightCurlyBrace {
// Allow commas after properties
if let Token::Comma = self.current.0 {
self.next_token()?;
}
// The new statement is a map
Statement::Map(vec![(left, *right)])
} else {
// Otherwise, the new statement is a block
Statement::Block(vec![Node::new(
Statement::Assignment {
identifier: left,
operator: Node::new(AssignmentOperator::Assign, operator_position),
value: right,
},
first_node.position,
)])
}
// If the next node is not an assignment, the new statement is a block
} else {
Statement::Block(vec![first_node])
};
loop {
// If a closing brace is found, return the new statement
if let (Token::RightCurlyBrace, right_position) = self.current {
self.next_token()?;
return Ok(Node::new(statement, (left_position.0, right_position.1)));
}
let next_node = self.parse_statement(0)?;
// If the new statement is already a block, add the next node to it
if let Some(block_statements) = statement.block_statements_mut() {
block_statements.push(next_node);
continue;
}
// If the new statement is already a map
if let Some(map_properties) = statement.map_properties_mut() {
// Expect the next node to be an assignment
if let Statement::Assignment {
identifier,
operator:
Node {
inner: AssignmentOperator::Assign,
..
},
value,
} = next_node.inner
{
// Add the new property to the map
map_properties.push((identifier, *value));
// Allow commas after properties
if let Token::Comma = self.current.0 {
self.next_token()?;
}
continue;
} else {
return Err(ParseError::ExpectedAssignment { actual: next_node });
}
}
}
}
(Token::LeftParenthesis, left_position) => {
self.next_token()?;
let node = self.parse_statement(0)?;
if let (Token::RightParenthesis, right_position) = self.current {
self.next_token()?;
Ok(Node::new(node.inner, (left_position.0, right_position.1)))
} else {
Err(ParseError::ExpectedToken {
expected: TokenKind::RightParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
})
}
}
(Token::LeftSquareBrace, left_position) => {
self.next_token()?;
let mut nodes = Vec::new();
loop {
if let (Token::RightSquareBrace, right_position) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::List(nodes),
(left_position.0, right_position.1),
));
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
let statement = self.parse_statement(0)?;
nodes.push(statement);
}
}
(
Token::IsEven
| Token::IsOdd
| Token::Length
| Token::ReadLine
| Token::ToString
| Token::WriteLine,
left_position,
) => {
let function = match self.current.0 {
Token::IsEven => BuiltInFunction::IsEven,
Token::IsOdd => BuiltInFunction::IsOdd,
Token::Length => BuiltInFunction::Length,
Token::ReadLine => BuiltInFunction::ReadLine,
Token::ToString => BuiltInFunction::ToString,
Token::WriteLine => BuiltInFunction::WriteLine,
_ => unreachable!(),
};
self.next_token()?;
if let (Token::LeftParenthesis, _) = self.current {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::LeftParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let mut value_arguments: Option<Vec<Node<Statement>>> = None;
loop {
if let (Token::RightParenthesis, _) = self.current {
self.next_token()?;
break;
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
if let Ok(node) = self.parse_statement(0) {
if let Some(ref mut arguments) = value_arguments {
arguments.push(node);
} else {
value_arguments = Some(vec![node]);
}
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::RightParenthesis,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
}
Ok(Node::new(
Statement::BuiltInFunctionCall {
function,
type_arguments: None,
value_arguments,
},
left_position,
))
}
(Token::Mut, left_position) => {
self.next_token()?;
let identifier = self.parse_identifier()?;
if let (Token::Equal, _) = self.current {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Equal,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let value = Box::new(self.parse_statement_in_mode(ParserMode::Mutable, 0)?);
let value_end = value.position.1;
Ok(Node::new(
Statement::AssignmentMut { identifier, value },
(left_position.0, value_end),
))
}
(Token::Struct, left_position) => {
self.next_token()?;
let (name, name_end) = if let Token::Identifier(_) = self.current.0 {
let position = self.current.1 .1;
(self.parse_identifier()?, position)
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Identifier,
actual: self.current.0.to_owned(),
position: self.current.1,
});
};
if let Token::LeftParenthesis = self.current.0 {
self.next_token()?;
let mut types = Vec::new();
loop {
if let (Token::RightParenthesis, right_position) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::StructDefinition(StructDefinition::Tuple {
name,
items: types,
}),
(left_position.0, right_position.1),
));
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
let type_node = self.parse_type()?;
types.push(type_node);
}
}
if let Token::LeftCurlyBrace = self.current.0 {
self.next_token()?;
let mut fields = Vec::new();
loop {
if let (Token::RightCurlyBrace, right_position) = self.current {
self.next_token()?;
return Ok(Node::new(
Statement::StructDefinition(StructDefinition::Fields {
name,
fields,
}),
(left_position.0, right_position.1),
));
}
if let (Token::Comma, _) = self.current {
self.next_token()?;
continue;
}
let field_name = self.parse_identifier()?;
if let (Token::Colon, _) = self.current {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Colon,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let field_type = self.parse_type()?;
fields.push((field_name, field_type));
}
}
Ok(Node::new(
Statement::StructDefinition(StructDefinition::Unit { name }),
(left_position.0, name_end),
))
}
(Token::While, left_position) => {
self.next_token()?;
let condition = self.parse_statement_in_mode(ParserMode::Condition, 0)?;
let body = self.parse_block()?;
let body_end = body.position.1;
Ok(Node::new(
Statement::While {
condition: Box::new(condition),
body: Box::new(body),
},
(left_position.0, body_end),
))
}
_ => Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
}),
}
}
fn parse_infix(&mut self, left: Node<Statement>) -> Result<Node<Statement>, ParseError> {
log::trace!("Parsing {} as infix operator", self.current.0);
let operator_precedence = self.current.0.precedence()
- if self.current.0.is_right_associative() {
1
} else {
0
};
let left_start = left.position.0;
if let Token::Equal | Token::PlusEqual | Token::MinusEqual = &self.current.0 {
let operator = match self.current.0 {
Token::Equal => AssignmentOperator::Assign,
Token::PlusEqual => AssignmentOperator::AddAssign,
Token::MinusEqual => AssignmentOperator::SubtractAssign,
_ => unreachable!(),
};
let operator_position = self.current.1;
self.next_token()?;
let identifier = if let Statement::Identifier(identifier) = left.inner {
Node::new(identifier, left.position)
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Identifier,
actual: self.current.0.to_owned(),
position: self.current.1,
});
};
let right = self.parse_statement(operator_precedence)?;
let right_end = right.position.1;
return Ok(Node::new(
Statement::Assignment {
identifier,
operator: Node::new(operator, operator_position),
value: Box::new(right),
},
(left_start, right_end),
));
}
if let Token::Dot = &self.current.0 {
let operator_position = self.current.1;
self.next_token()?;
let right = self.parse_statement(operator_precedence)?;
let right_end = right.position.1;
if let Statement::BuiltInFunctionCall {
function,
type_arguments,
value_arguments,
} = right.inner
{
let value_arguments = if let Some(mut arguments) = value_arguments {
arguments.insert(0, left);
Some(arguments)
} else {
Some(vec![left])
};
return Ok(Node::new(
Statement::BuiltInFunctionCall {
function,
type_arguments,
value_arguments,
},
(left_start, right_end),
));
}
if let Statement::Invokation {
invokee: function,
type_arguments,
value_arguments,
} = right.inner
{
let value_arguments = if let Some(mut arguments) = value_arguments {
arguments.insert(0, left);
Some(arguments)
} else {
Some(vec![left])
};
return Ok(Node::new(
Statement::Invokation {
invokee: function,
type_arguments,
value_arguments,
},
(left_start, right_end),
));
}
return Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left),
operator: Node::new(BinaryOperator::FieldAccess, operator_position),
right: Box::new(right),
},
(left_start, right_end),
));
}
let binary_operator = match &self.current.0 {
Token::DoubleAmpersand => Node::new(BinaryOperator::And, self.current.1),
Token::DoubleEqual => Node::new(BinaryOperator::Equal, self.current.1),
Token::DoublePipe => Node::new(BinaryOperator::Or, self.current.1),
Token::Greater => Node::new(BinaryOperator::Greater, self.current.1),
Token::GreaterEqual => Node::new(BinaryOperator::GreaterOrEqual, self.current.1),
Token::Less => Node::new(BinaryOperator::Less, self.current.1),
Token::LessEqual => Node::new(BinaryOperator::LessOrEqual, self.current.1),
Token::Minus => Node::new(BinaryOperator::Subtract, self.current.1),
Token::Plus => Node::new(BinaryOperator::Add, self.current.1),
Token::Star => Node::new(BinaryOperator::Multiply, self.current.1),
Token::Slash => Node::new(BinaryOperator::Divide, self.current.1),
Token::Percent => Node::new(BinaryOperator::Modulo, self.current.1),
_ => {
return Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
};
self.next_token()?;
let left_start = left.position.0;
let right = self.parse_statement(operator_precedence)?;
let right_end = right.position.1;
Ok(Node::new(
Statement::BinaryOperation {
left: Box::new(left),
operator: binary_operator,
right: Box::new(right),
},
(left_start, right_end),
))
}
fn parse_postfix(&mut self, left: Node<Statement>) -> Result<Node<Statement>, ParseError> {
log::trace!("Parsing {} as postfix operator", self.current.0);
let left_start = left.position.0;
let statement = match &self.current.0 {
Token::LeftParenthesis => {
self.next_token()?;
let mut arguments = Vec::new();
while self.current.0 != Token::RightParenthesis {
let argument = self.parse_statement(0)?;
arguments.push(argument);
if let Token::Comma = self.current.0 {
self.next_token()?;
} else {
break;
}
}
self.next_token()?;
let right_end = self.current.1 .1;
Node::new(
Statement::Invokation {
invokee: Box::new(left),
type_arguments: None,
value_arguments: Some(arguments),
},
(left_start, right_end),
)
}
Token::LeftSquareBrace => {
let operator_start = self.current.1 .0;
self.next_token()?;
let index = self.parse_statement(0)?;
let operator_end = if let Token::RightSquareBrace = self.current.0 {
let end = self.current.1 .1;
self.next_token()?;
end
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::RightSquareBrace,
actual: self.current.0.to_owned(),
position: self.current.1,
});
};
let right_end = self.current.1 .1;
Node::new(
Statement::BinaryOperation {
left: Box::new(left),
operator: Node::new(
BinaryOperator::ListIndex,
(operator_start, operator_end),
),
right: Box::new(index),
},
(left_start, right_end),
)
}
Token::Semicolon => {
let operator_end = self.current.1 .1;
self.next_token()?;
Node::new(Statement::Nil(Box::new(left)), (left_start, operator_end))
}
_ => {
return Err(ParseError::UnexpectedToken {
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
};
if self.current.0.is_postfix() {
self.parse_postfix(statement)
} else {
Ok(statement)
}
}
fn parse_identifier(&mut self) -> Result<Node<Identifier>, ParseError> {
let identifier = if let Token::Identifier(text) = &self.current.0 {
Node::new(Identifier::new(text), self.current.1)
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::Identifier,
actual: self.current.0.to_owned(),
position: self.current.1,
});
};
self.next_token()?;
Ok(identifier)
}
fn parse_block(&mut self) -> Result<Node<Statement>, ParseError> {
let left_start = self.current.1 .0;
if let Token::LeftCurlyBrace = self.current.0 {
self.next_token()?;
} else {
return Err(ParseError::ExpectedToken {
expected: TokenKind::LeftCurlyBrace,
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
let mut statements = Vec::new();
loop {
if let Token::RightCurlyBrace = self.current.0 {
let right_end = self.current.1 .1;
self.next_token()?;
return Ok(Node::new(
Statement::Block(statements),
(left_start, right_end),
));
}
let statement = self.parse_statement(0)?;
statements.push(statement);
}
}
fn parse_type(&mut self) -> Result<Node<Type>, ParseError> {
let r#type = match self.current.0 {
Token::Bool => Type::Boolean,
Token::FloatKeyword => Type::Float,
Token::Int => Type::Integer,
_ => {
return Err(ParseError::ExpectedTokenMultiple {
expected: vec![TokenKind::Bool, TokenKind::FloatKeyword, TokenKind::Int],
actual: self.current.0.to_owned(),
position: self.current.1,
});
}
};
let position = self.current.1;
self.next_token()?;
Ok(Node::new(r#type, position))
}
}
#[derive(Debug, PartialEq, Clone, Copy)]
enum ParserMode {
Condition,
Mutable,
None,
}
#[derive(Debug, PartialEq, Clone)]
pub enum ParseError {
BooleanError {
error: ParseBoolError,
position: Span,
},
LexError(LexError),
ExpectedAssignment {
actual: Node<Statement>,
},
ExpectedIdentifier {
actual: TokenOwned,
position: Span,
},
ExpectedToken {
expected: TokenKind,
actual: TokenOwned,
position: Span,
},
ExpectedTokenMultiple {
expected: Vec<TokenKind>,
actual: TokenOwned,
position: Span,
},
UnexpectedToken {
actual: TokenOwned,
position: Span,
},
FloatError {
error: ParseFloatError,
position: Span,
},
IntegerError {
error: ParseIntError,
position: Span,
},
}
impl From<LexError> for ParseError {
fn from(v: LexError) -> Self {
Self::LexError(v)
}
}
impl ParseError {
pub fn position(&self) -> Span {
match self {
ParseError::BooleanError { position, .. } => *position,
ParseError::ExpectedAssignment { actual } => actual.position,
ParseError::ExpectedIdentifier { position, .. } => *position,
ParseError::ExpectedToken { position, .. } => *position,
ParseError::ExpectedTokenMultiple { position, .. } => *position,
ParseError::FloatError { position, .. } => *position,
ParseError::IntegerError { position, .. } => *position,
ParseError::LexError(error) => error.position(),
ParseError::UnexpectedToken { position, .. } => *position,
}
}
}
impl Error for ParseError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
Self::LexError(error) => Some(error),
_ => None,
}
}
}
impl Display for ParseError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::BooleanError { error, .. } => write!(f, "{}", error),
Self::ExpectedAssignment { .. } => write!(f, "Expected assignment"),
Self::ExpectedIdentifier { actual, .. } => {
write!(f, "Expected identifier, found {actual}")
}
Self::ExpectedToken {
expected, actual, ..
} => write!(f, "Expected token {expected}, found {actual}"),
Self::ExpectedTokenMultiple {
expected, actual, ..
} => {
write!(f, "Expected one of")?;
for (i, token_kind) in expected.iter().enumerate() {
if i == 0 {
write!(f, " {token_kind}")?;
} else if i == expected.len() - 1 {
write!(f, " or {token_kind}")?;
} else {
write!(f, ", {token_kind}")?;
}
}
write!(f, ", found {actual}")
}
Self::FloatError { error, .. } => write!(f, "{}", error),
Self::IntegerError { error, .. } => write!(f, "{}", error),
Self::LexError(error) => write!(f, "{}", error),
Self::UnexpectedToken { actual, .. } => write!(f, "Unexpected token {actual}"),
}
}
}
#[cfg(test)]
mod tests {
use crate::{BinaryOperator, Identifier, StructDefinition, Type, UnaryOperator};
use super::*;
#[test]
fn mutable_variable() {
let input = "mut x = false";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::AssignmentMut {
identifier: Node::new(Identifier::new("x"), (4, 5)),
value: Box::new(Node::new(
Statement::ConstantMut(Value::boolean_mut(false)),
(8, 13)
)),
},
(0, 13)
)]
.into()
})
);
}
#[test]
fn async_block() {
let input = "async { x = 42; y = 4.0 }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::AsyncBlock(vec![
Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("x"), (8, 9)),
operator: Node::new(AssignmentOperator::Assign, (10, 11)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(42)),
(12, 14)
)),
},
(8, 14)
))),
(8, 15)
),
Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("y"), (16, 17)),
operator: Node::new(AssignmentOperator::Assign, (18, 19)),
value: Box::new(Node::new(
Statement::Constant(Value::float(4.0)),
(20, 23)
)),
},
(16, 23)
)
]),
(0, 25)
)]
.into()
})
);
}
#[test]
fn tuple_struct_access() {
let input = "(Foo(42, 'bar')).0";
let mut tree = AbstractSyntaxTree::new();
if parse_into(input, &mut tree).is_err() {
println!("{tree:?}")
}
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Invokation {
invokee: Box::new(Node::new(
Statement::Identifier(Identifier::new("Foo")),
(1, 4)
)),
type_arguments: None,
value_arguments: Some(vec![
Node::new(Statement::Constant(Value::integer(42)), (5, 7)),
Node::new(Statement::Constant(Value::string("bar")), (9, 14))
]),
},
(0, 16)
)),
operator: Node::new(BinaryOperator::FieldAccess, (16, 17)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(0)),
(17, 18)
))
},
(0, 18)
)]
.into()
})
);
}
#[test]
fn fields_struct_instantiation() {
let input = "Foo { a = 42, b = 4.0 }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::FieldsStructInstantiation {
name: Node::new(Identifier::new("Foo"), (0, 3)),
fields: vec![
(
Node::new(Identifier::new("a"), (6, 7)),
Node::new(Statement::Constant(Value::integer(42)), (10, 12))
),
(
Node::new(Identifier::new("b"), (14, 15)),
Node::new(Statement::Constant(Value::float(4.0)), (18, 21))
)
]
},
(0, 23)
)]
.into()
})
);
}
#[test]
fn fields_struct() {
let input = "struct Foo { a: int, b: float }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::StructDefinition(StructDefinition::Fields {
name: Node::new(Identifier::new("Foo"), (7, 10)),
fields: vec![
(
Node::new(Identifier::new("a"), (13, 14)),
Node::new(Type::Integer, (16, 19))
),
(
Node::new(Identifier::new("b"), (21, 22)),
Node::new(Type::Float, (24, 29))
)
]
}),
(0, 31)
)]
.into()
})
);
}
#[test]
fn tuple_struct_instantiation() {
let input = "struct Foo(int, float) Foo(1, 2.0)";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [
Node::new(
Statement::StructDefinition(StructDefinition::Tuple {
name: Node::new(Identifier::new("Foo"), (7, 10)),
items: vec![
Node::new(Type::Integer, (11, 14)),
Node::new(Type::Float, (16, 21))
]
}),
(0, 22)
),
Node::new(
Statement::Invokation {
invokee: Box::new(Node::new(
Statement::Identifier(Identifier::new("Foo")),
(23, 26)
)),
type_arguments: None,
value_arguments: Some(vec![
Node::new(Statement::Constant(Value::integer(1)), (27, 28)),
Node::new(Statement::Constant(Value::float(2.0)), (30, 33))
])
},
(23, 34)
)
]
.into()
})
);
}
#[test]
fn tuple_struct() {
let input = "struct Foo(int, float)";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::StructDefinition(StructDefinition::Tuple {
name: Node::new(Identifier::new("Foo"), (7, 10)),
items: vec![
Node::new(Type::Integer, (11, 14)),
Node::new(Type::Float, (16, 21))
]
}),
(0, 22)
)]
.into()
})
);
}
#[test]
fn unit_struct() {
let input = "struct Foo";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::StructDefinition(StructDefinition::Unit {
name: Node::new(Identifier::new("Foo"), (7, 10)),
}),
(0, 10)
)]
.into()
})
);
}
#[test]
fn list_index_nested() {
let input = "[1, [2], 3][1][0]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(
Statement::List(vec![Node::new(
Statement::Constant(Value::integer(2)),
(5, 6)
)]),
(4, 7)
),
Node::new(Statement::Constant(Value::integer(3)), (9, 10))
]),
(0, 11)
)),
operator: Node::new(BinaryOperator::ListIndex, (11, 14)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(12, 13)
))
},
(0, 15)
)),
operator: Node::new(BinaryOperator::ListIndex, (14, 17)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(0)),
(15, 16)
))
},
(0, 17)
),]
.into()
})
);
}
#[test]
fn map_property_nested() {
let input = "{ x = { y = 42 } }.x.y";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Map(vec![(
Node::new(Identifier::new("x"), (2, 3)),
Node::new(
Statement::Map(vec![(
Node::new(Identifier::new("y"), (8, 9)),
Node::new(
Statement::Constant(Value::integer(42)),
(12, 14)
)
)]),
(6, 16)
)
)]),
(0, 18)
)),
operator: Node::new(BinaryOperator::FieldAccess, (18, 19)),
right: Box::new(Node::new(
Statement::Identifier(Identifier::new("x")),
(19, 20)
))
},
(0, 20)
)),
operator: Node::new(BinaryOperator::FieldAccess, (20, 21)),
right: Box::new(Node::new(
Statement::Identifier(Identifier::new("y")),
(21, 22)
))
},
(0, 22)
)]
.into()
})
)
}
#[test]
fn range() {
let input = "0..42";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Constant(Value::range(0..42)), (0, 5))].into()
})
);
}
#[test]
fn negate_variable() {
let input = "a = 1; -a";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [
Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("a"), (0, 1)),
operator: Node::new(AssignmentOperator::Assign, (2, 3)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(4, 5)
)),
},
(0, 5)
))),
(0, 6)
),
Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Negate, (7, 8)),
operand: Box::new(Node::new(
Statement::Identifier(Identifier::new("a")),
(8, 9)
)),
},
(7, 9)
)
]
.into()
})
);
}
#[test]
fn negate_expression() {
let input = "-(1 + 1)";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Negate, (0, 1)),
operand: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(2, 3)
)),
operator: Node::new(BinaryOperator::Add, (4, 5)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(6, 7)
)),
},
(1, 8)
)),
},
(0, 8)
)]
.into()
})
);
}
#[test]
fn not_expression() {
let input = "!(1 > 42)";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Not, (0, 1)),
operand: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(2, 3)
)),
operator: Node::new(BinaryOperator::Greater, (4, 5)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(42)),
(6, 8)
)),
},
(1, 9)
)),
},
(0, 9)
)]
.into()
})
);
}
#[test]
fn not_variable() {
let input = "a = false; !a";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [
Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("a"), (0, 1)),
operator: Node::new(AssignmentOperator::Assign, (2, 3)),
value: Box::new(Node::new(
Statement::Constant(Value::boolean(false)),
(4, 9)
)),
},
(0, 9)
))),
(0, 10)
),
Node::new(
Statement::UnaryOperation {
operator: Node::new(UnaryOperator::Not, (11, 12)),
operand: Box::new(Node::new(
Statement::Identifier(Identifier::new("a")),
(12, 13)
)),
},
(11, 13)
)
]
.into()
})
);
}
#[test]
fn r#if() {
let input = "if x { y }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::If {
condition: Box::new(Node::new(
Statement::Identifier(Identifier::new("x")),
(3, 4)
)),
body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("y")),
(7, 8)
)]),
(5, 10)
)),
},
(0, 10)
)]
.into()
})
);
}
#[test]
fn if_else() {
let input = "if x { y } else { z }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::IfElse {
condition: Box::new(Node::new(
Statement::Identifier(Identifier::new("x")),
(3, 4)
)),
if_body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("y")),
(7, 8)
)]),
(5, 10)
)),
else_body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("z")),
(18, 19)
)]),
(16, 21)
)),
},
(0, 21)
)]
.into()
})
);
}
#[test]
fn if_else_if_else() {
let input = "if x { y } else if z { a } else { b }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::IfElseIfElse {
condition: Box::new(Node::new(
Statement::Identifier(Identifier::new("x")),
(3, 4)
)),
if_body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("y")),
(7, 8)
)]),
(5, 10)
)),
else_ifs: vec![(
Node::new(Statement::Identifier(Identifier::new("z")), (19, 20)),
Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("a")),
(23, 24)
)]),
(21, 26)
),
)],
else_body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Identifier(Identifier::new("b")),
(34, 35)
)]),
(32, 37)
)),
},
(0, 37)
)]
.into()
})
);
}
#[test]
fn malformed_map() {
let input = "{ x = 1, y = 2, z = 3; }";
assert_eq!(
parse(input),
Err(DustError::ParseError {
source: input,
parse_error: ParseError::ExpectedAssignment {
actual: Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("z"), (16, 17)),
operator: Node::new(AssignmentOperator::Assign, (18, 19)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(3)),
(20, 21)
)),
},
(16, 21)
))),
(16, 22)
),
}
})
);
}
#[test]
fn while_loop() {
let input = "while x < 10 { x += 1 }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::While {
condition: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Identifier(Identifier::new("x")),
(6, 7)
)),
operator: Node::new(BinaryOperator::Less, (8, 9)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(10)),
(10, 12)
)),
},
(6, 12)
)),
body: Box::new(Node::new(
Statement::Block(vec![Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("x"), (15, 16)),
operator: Node::new(AssignmentOperator::AddAssign, (17, 19)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(20, 21)
)),
},
(15, 21)
)]),
(13, 23)
)),
},
(0, 23)
)]
.into()
})
);
}
#[test]
fn add_assign() {
let input = "a += 1";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("a"), (0, 1)),
operator: Node::new(AssignmentOperator::AddAssign, (2, 4)),
value: Box::new(Node::new(Statement::Constant(Value::integer(1)), (5, 6))),
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn or() {
let input = "true || false";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::boolean(true)),
(0, 4)
)),
operator: Node::new(BinaryOperator::Or, (5, 7)),
right: Box::new(Node::new(
Statement::Constant(Value::boolean(false)),
(8, 13)
)),
},
(0, 13)
)]
.into()
})
);
}
#[test]
fn misplaced_semicolon() {
let input = ";";
assert_eq!(
parse(input),
Err(DustError::ParseError {
source: input,
parse_error: ParseError::UnexpectedToken {
actual: TokenOwned::Semicolon,
position: (0, 1)
}
})
);
}
#[test]
fn block_with_one_statement() {
let input = "{ 40 + 2 }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Block(vec![Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(40)),
(2, 4)
)),
operator: Node::new(BinaryOperator::Add, (5, 6)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(7, 8)
)),
},
(2, 8)
)]),
(0, 10)
)]
.into()
})
);
}
#[test]
fn block_with_assignment() {
let input = "{ foo = 42; bar = 42; baz = '42' }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Block(vec![
Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("foo"), (2, 5)),
operator: Node::new(AssignmentOperator::Assign, (6, 7)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(42)),
(8, 10)
)),
},
(2, 10)
),)),
(2, 11)
),
Node::new(
Statement::Nil(Box::new(Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("bar"), (12, 15)),
operator: Node::new(AssignmentOperator::Assign, (16, 17)),
value: Box::new(Node::new(
Statement::Constant(Value::integer(42)),
(18, 20)
)),
},
(12, 20)
),)),
(12, 21)
),
Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("baz"), (22, 25)),
operator: Node::new(AssignmentOperator::Assign, (26, 27)),
value: Box::new(Node::new(
Statement::Constant(Value::string("42")),
(28, 32)
)),
},
(22, 32)
)
]),
(0, 34)
)]
.into()
})
);
}
#[test]
fn empty_map() {
let input = "{}";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Map(vec![]), (0, 2))].into()
})
);
}
#[test]
fn map_with_trailing_comma() {
let input = "{ foo = 42, bar = 42, baz = '42', }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Map(vec![
(
Node::new(Identifier::new("foo"), (2, 5)),
Node::new(Statement::Constant(Value::integer(42)), (8, 10))
),
(
Node::new(Identifier::new("bar"), (12, 15)),
Node::new(Statement::Constant(Value::integer(42)), (18, 20))
),
(
Node::new(Identifier::new("baz"), (22, 25)),
Node::new(Statement::Constant(Value::string("42")), (28, 32))
),
]),
(0, 35)
)]
.into()
})
);
}
#[test]
fn map_with_two_fields() {
let input = "{ x = 42, y = 'foobar' }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Map(vec![
(
Node::new(Identifier::new("x"), (2, 3)),
Node::new(Statement::Constant(Value::integer(42)), (6, 8))
),
(
Node::new(Identifier::new("y"), (10, 11)),
Node::new(Statement::Constant(Value::string("foobar")), (14, 22))
)
]),
(0, 24)
)]
.into()
})
);
}
#[test]
fn map_with_one_field() {
let input = "{ x = 42 }";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Map(vec![(
Node::new(Identifier::new("x"), (2, 3)),
Node::new(Statement::Constant(Value::integer(42)), (6, 8))
)]),
(0, 10)
)]
.into()
})
);
}
#[test]
fn equal() {
let input = "42 == 42";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(42)), (0, 2))),
operator: Node::new(BinaryOperator::Equal, (3, 5)),
right: Box::new(Node::new(Statement::Constant(Value::integer(42)), (6, 8)))
},
(0, 8)
)]
.into()
})
);
}
#[test]
fn modulo() {
let input = "42 % 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(42)), (0, 2))),
operator: Node::new(BinaryOperator::Modulo, (3, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6)))
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn divide() {
let input = "42 / 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(42)), (0, 2))),
operator: Node::new(BinaryOperator::Divide, (3, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6)))
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn less_than() {
let input = "1 < 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Less, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5))),
},
(0, 5)
)]
.into()
})
);
}
#[test]
fn less_than_or_equal() {
let input = "1 <= 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::LessOrEqual, (2, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6))),
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn greater_than_or_equal() {
let input = "1 >= 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::GreaterOrEqual, (2, 4)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (5, 6))),
},
(0, 6)
)]
.into()
})
);
}
#[test]
fn greater_than() {
let input = "1 > 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Greater, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5))),
},
(0, 5)
)]
.into()
})
);
}
#[test]
fn subtract_negative_integers() {
let input = "-1 - -2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Node::new(Statement::Constant(Value::integer(-1)), (0, 2)).into(),
operator: Node::new(BinaryOperator::Subtract, (3, 4)),
right: Node::new(Statement::Constant(Value::integer(-2)), (5, 7)).into()
},
(0, 7)
)]
.into()
})
);
}
#[test]
fn string_concatenation() {
let input = "\"Hello, \" + \"World!\"";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::string("Hello, ")),
(0, 9)
)),
operator: Node::new(BinaryOperator::Add, (10, 11)),
right: Box::new(Node::new(
Statement::Constant(Value::string("World!")),
(12, 20)
))
},
(0, 20)
)]
.into()
})
);
}
#[test]
fn string() {
let input = "\"Hello, World!\"";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Constant(Value::string("Hello, World!")),
(0, 15)
)]
.into()
})
);
}
#[test]
fn boolean() {
let input = "true";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Constant(Value::boolean(true)), (0, 4))].into()
})
);
}
#[test]
fn property_access_function_call() {
let input = "42.is_even()";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BuiltInFunctionCall {
function: BuiltInFunction::IsEven,
type_arguments: None,
value_arguments: Some(vec![Node::new(
Statement::Constant(Value::integer(42)),
(0, 2)
)])
},
(0, 10),
)]
.into()
})
);
}
#[test]
fn list_index() {
let input = "[1, 2, 3][0]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(Statement::Constant(Value::integer(2)), (4, 5)),
Node::new(Statement::Constant(Value::integer(3)), (7, 8)),
]),
(0, 9)
)),
operator: Node::new(BinaryOperator::ListIndex, (9, 12)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(0)),
(10, 11)
)),
},
(0, 12),
)]
.into()
})
);
}
#[test]
fn property_access() {
let input = "a.b";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Identifier(Identifier::new("a")),
(0, 1)
)),
operator: Node::new(BinaryOperator::FieldAccess, (1, 2)),
right: Box::new(Node::new(
Statement::Identifier(Identifier::new("b")),
(2, 3)
)),
},
(0, 3),
)]
.into()
})
);
}
#[test]
fn complex_list() {
let input = "[1, 1 + 1, 2 + (4 * 10)]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Add, (6, 7)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(8, 9)
))
},
(4, 9)
),
Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(11, 12)
)),
operator: Node::new(BinaryOperator::Add, (13, 14)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(4)),
(16, 17)
)),
operator: Node::new(BinaryOperator::Multiply, (18, 19)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(10)),
(20, 22)
))
},
(15, 23)
))
},
(11, 23)
),
]),
(0, 24),
)]
.into()
})
);
}
#[test]
fn list() {
let input = "[1, 2]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::List(vec![
Node::new(Statement::Constant(Value::integer(1)), (1, 2)),
Node::new(Statement::Constant(Value::integer(2)), (4, 5)),
]),
(0, 6),
)]
.into()
})
);
}
#[test]
fn empty_list() {
let input = "[]";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::List(vec![]), (0, 2))].into()
})
);
}
#[test]
fn float() {
let input = "42.0";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(Statement::Constant(Value::float(42.0)), (0, 4))].into()
})
);
}
#[test]
fn add() {
let input = "1 + 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Add, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5)),)
},
(0, 5),
)]
.into()
})
);
}
#[test]
fn multiply() {
let input = "1 * 2";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Multiply, (2, 3)),
right: Box::new(Node::new(Statement::Constant(Value::integer(2)), (4, 5)),)
},
(0, 5),
)]
.into()
})
);
}
#[test]
fn add_and_multiply() {
let input = "1 + 2 * 3";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(Statement::Constant(Value::integer(1)), (0, 1))),
operator: Node::new(BinaryOperator::Add, (2, 3)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Multiply, (6, 7)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(3)),
(8, 9)
),)
},
(4, 9)
),)
},
(0, 9),
)]
.into()
})
);
}
#[test]
fn assignment() {
let input = "a = 1 + 2 * 3";
assert_eq!(
parse(input),
Ok(AbstractSyntaxTree {
nodes: [Node::new(
Statement::Assignment {
identifier: Node::new(Identifier::new("a"), (0, 1)),
operator: Node::new(AssignmentOperator::Assign, (2, 3)),
value: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(1)),
(4, 5)
)),
operator: Node::new(BinaryOperator::Add, (6, 7)),
right: Box::new(Node::new(
Statement::BinaryOperation {
left: Box::new(Node::new(
Statement::Constant(Value::integer(2)),
(8, 9)
)),
operator: Node::new(BinaryOperator::Multiply, (10, 11)),
right: Box::new(Node::new(
Statement::Constant(Value::integer(3)),
(12, 13)
),)
},
(8, 13)
),)
},
(4, 13)
),)
},
(0, 13),
)]
.into()
})
);
}
}