1
0
dust/dust-lang/src/type.rs

720 lines
22 KiB
Rust

//! Value types.
//!
//! Most types are concrete and specific, the exceptions are the Generic and Any types.
//!
//! Generic types are temporary placeholders that describe a type that will be defined later. The
//! interpreter should use the analysis phase to enforce that all Generic types have a concrete
//! type assigned to them before the program is run.
//!
//! The Any type is used in cases where a value's type does not matter. For example, the standard
//! library's "length" function does not care about the type of item in the list, only the list
//! itself. So the input is defined as `[any]`, i.e. `Type::ListOf(Box::new(Type::Any))`.
use std::{
cmp::Ordering,
collections::HashMap,
fmt::{self, Display, Formatter},
};
use serde::{Deserialize, Serialize};
use crate::Identifier;
/// Description of a kind of value.
///
/// See the [module documentation](index.html) for more information.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub enum Type {
Any,
Boolean,
Byte,
Character,
Enum(EnumType),
Float,
Function(FunctionType),
Generic {
identifier: Identifier,
concrete_type: Option<Box<Type>>,
},
Integer,
List {
item_type: Box<Type>,
length: usize,
},
ListEmpty,
ListOf {
item_type: Box<Type>,
},
Map {
pairs: HashMap<Identifier, Type>,
},
Number,
Range {
r#type: RangeableType,
},
String {
length: Option<usize>,
},
Struct(StructType),
Tuple {
fields: Option<Vec<Type>>,
},
}
impl Type {
/// Returns a concrete type, either the type itself or the concrete type of a generic type.
pub fn concrete_type(&self) -> &Type {
if let Type::Generic {
concrete_type: Some(concrete_type),
..
} = self
{
concrete_type.concrete_type()
} else {
self
}
}
/// Checks that the type is compatible with another type.
pub fn check(&self, other: &Type) -> Result<(), TypeConflict> {
match (self.concrete_type(), other.concrete_type()) {
(Type::Any, _)
| (_, Type::Any)
| (Type::Boolean, Type::Boolean)
| (Type::Byte, Type::Byte)
| (Type::Character, Type::Character)
| (Type::Float, Type::Float)
| (Type::Integer, Type::Integer)
| (Type::String { .. }, Type::String { .. }) => return Ok(()),
(
Type::Generic {
concrete_type: left,
..
},
Type::Generic {
concrete_type: right,
..
},
) => match (left, right) {
(Some(left), Some(right)) => {
if left.check(right).is_ok() {
return Ok(());
}
}
(None, None) => {
return Ok(());
}
_ => {}
},
(Type::Generic { concrete_type, .. }, other)
| (other, Type::Generic { concrete_type, .. }) => {
if let Some(concrete_type) = concrete_type {
if other == concrete_type.as_ref() {
return Ok(());
}
}
}
(Type::Struct(left_struct_type), Type::Struct(right_struct_type)) => {
if left_struct_type == right_struct_type {
return Ok(());
}
}
(
Type::List {
item_type: left_type,
length: left_length,
},
Type::List {
item_type: right_type,
length: right_length,
},
) => {
if left_length != right_length {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
if left_type.check(right_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
return Ok(());
}
(
Type::ListOf {
item_type: left_type,
},
Type::ListOf {
item_type: right_type,
},
) => {
if left_type.check(right_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
(
Type::List {
item_type: list_item_type,
..
},
Type::ListOf {
item_type: list_of_item_type,
},
)
| (
Type::ListOf {
item_type: list_of_item_type,
},
Type::List {
item_type: list_item_type,
..
},
) => {
// TODO: This is a hack, remove it.
if let Type::Any = **list_of_item_type {
return Ok(());
}
if list_item_type.check(list_of_item_type).is_err() {
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
}
(
Type::Function(FunctionType {
type_parameters: left_type_parameters,
value_parameters: left_value_parameters,
return_type: left_return,
}),
Type::Function(FunctionType {
type_parameters: right_type_parameters,
value_parameters: right_value_parameters,
return_type: right_return,
}),
) => {
if left_return != right_return
|| left_type_parameters != right_type_parameters
|| left_value_parameters != right_value_parameters
{
return Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
});
}
return Ok(());
}
(Type::Range { r#type: left_type }, Type::Range { r#type: right_type }) => {
if left_type == right_type {
return Ok(());
}
}
(Type::Number, Type::Number | Type::Integer | Type::Float)
| (Type::Integer | Type::Float, Type::Number) => {
return Ok(());
}
_ => {}
}
Err(TypeConflict {
actual: other.clone(),
expected: self.clone(),
})
}
pub fn has_field(&self, field: &Identifier) -> bool {
match field.as_str() {
"to_string" => true,
"length" => {
matches!(
self,
Type::List { .. }
| Type::ListOf { .. }
| Type::ListEmpty
| Type::Map { .. }
| Type::String { .. }
)
}
"is_even" | "is_odd" => matches!(self, Type::Integer | Type::Float),
_ => match self {
Type::Struct(StructType::Fields { fields, .. }) => fields.contains_key(field),
Type::Map { pairs } => pairs.contains_key(field),
_ => false,
},
}
}
pub fn get_field_type(&self, field: &Identifier) -> Option<Type> {
match field.as_str() {
"length" => match self {
Type::List { .. } => Some(Type::Integer),
Type::ListOf { .. } => Some(Type::Integer),
Type::ListEmpty => Some(Type::Integer),
Type::Map { .. } => Some(Type::Integer),
Type::String { .. } => Some(Type::Integer),
_ => None,
},
"is_even" | "is_odd" => Some(Type::Boolean),
_ => match self {
Type::Struct(StructType::Fields { fields, .. }) => fields.get(field).cloned(),
Type::Map { pairs } => pairs.get(field).cloned(),
_ => None,
},
}
}
}
impl Display for Type {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Type::Any => write!(f, "any"),
Type::Boolean => write!(f, "bool"),
Type::Byte => write!(f, "byte"),
Type::Character => write!(f, "char"),
Type::Enum(EnumType { name, .. }) => write!(f, "{name}"),
Type::Float => write!(f, "float"),
Type::Function(function_type) => write!(f, "{function_type}"),
Type::Generic { concrete_type, .. } => {
match concrete_type.clone().map(|r#box| *r#box) {
Some(Type::Generic { identifier, .. }) => write!(f, "{identifier}"),
Some(concrete_type) => write!(f, "implied to be {concrete_type}"),
None => write!(f, "unknown"),
}
}
Type::Integer => write!(f, "int"),
Type::List { item_type, length } => write!(f, "[{item_type}; {length}]"),
Type::ListEmpty => write!(f, "[]"),
Type::ListOf { item_type } => write!(f, "[{item_type}]"),
Type::Map { pairs } => {
write!(f, "map ")?;
write!(f, "{{")?;
for (index, (key, value)) in pairs.iter().enumerate() {
write!(f, "{key}: {value}")?;
if index != pairs.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "}}")
}
Type::Number => write!(f, "num"),
Type::Range { r#type } => write!(f, "{type} range"),
Type::String { .. } => write!(f, "str"),
Type::Struct(struct_type) => write!(f, "{struct_type}"),
Type::Tuple { fields } => {
if let Some(fields) = fields {
write!(f, "(")?;
for (index, r#type) in fields.iter().enumerate() {
write!(f, "{type}")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, ")")
} else {
write!(f, "tuple")
}
}
}
}
}
impl PartialOrd for Type {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Type {
fn cmp(&self, other: &Self) -> Ordering {
match (self, other) {
(Type::Any, Type::Any) => Ordering::Equal,
(Type::Any, _) => Ordering::Greater,
(Type::Boolean, Type::Boolean) => Ordering::Equal,
(Type::Boolean, _) => Ordering::Greater,
(Type::Byte, Type::Byte) => Ordering::Equal,
(Type::Byte, _) => Ordering::Greater,
(Type::Character, Type::Character) => Ordering::Equal,
(Type::Character, _) => Ordering::Greater,
(Type::Enum(left_enum), Type::Enum(right_enum)) => left_enum.cmp(right_enum),
(Type::Enum(_), _) => Ordering::Greater,
(Type::Float, Type::Float) => Ordering::Equal,
(Type::Float, _) => Ordering::Greater,
(Type::Function(left_function), Type::Function(right_function)) => {
left_function.cmp(right_function)
}
(Type::Function(_), _) => Ordering::Greater,
(Type::Generic { .. }, Type::Generic { .. }) => Ordering::Equal,
(Type::Generic { .. }, _) => Ordering::Greater,
(Type::Integer, Type::Integer) => Ordering::Equal,
(Type::Integer, _) => Ordering::Greater,
(
Type::List {
item_type: left_item_type,
length: left_length,
},
Type::List {
item_type: right_item_type,
length: right_length,
},
) => {
if left_length == right_length {
left_item_type.cmp(right_item_type)
} else {
left_length.cmp(right_length)
}
}
(Type::List { .. }, _) => Ordering::Greater,
(Type::ListEmpty, Type::ListEmpty) => Ordering::Equal,
(Type::ListEmpty, _) => Ordering::Greater,
(
Type::ListOf {
item_type: left_item_type,
},
Type::ListOf {
item_type: right_item_type,
},
) => left_item_type.cmp(right_item_type),
(Type::ListOf { .. }, _) => Ordering::Greater,
(Type::Map { pairs: left_pairs }, Type::Map { pairs: right_pairs }) => {
left_pairs.iter().cmp(right_pairs.iter())
}
(Type::Map { .. }, _) => Ordering::Greater,
(Type::Number, Type::Number) => Ordering::Equal,
(Type::Number, _) => Ordering::Greater,
(Type::Range { r#type: left_type }, Type::Range { r#type: right_type }) => {
left_type.cmp(right_type)
}
(Type::Range { .. }, _) => Ordering::Greater,
(Type::String { length: left }, Type::String { length: right }) => left.cmp(right),
(Type::String { .. }, _) => Ordering::Greater,
(Type::Struct(left_struct), Type::Struct(right_struct)) => {
left_struct.cmp(right_struct)
}
(Type::Struct(_), _) => Ordering::Greater,
(Type::Tuple { fields: left }, Type::Tuple { fields: right }) => left.cmp(right),
(Type::Tuple { .. }, _) => Ordering::Greater,
}
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct FunctionType {
pub type_parameters: Option<Vec<Identifier>>,
pub value_parameters: Option<Vec<(Identifier, Type)>>,
pub return_type: Option<Box<Type>>,
}
impl Display for FunctionType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "fn ")?;
if let Some(type_parameters) = &self.type_parameters {
write!(f, "<")?;
for (index, type_parameter) in type_parameters.iter().enumerate() {
if index > 0 {
write!(f, ", ")?;
}
write!(f, "{type_parameter}")?;
}
write!(f, ">")?;
}
write!(f, "(")?;
if let Some(value_parameters) = &self.value_parameters {
for (index, (identifier, r#type)) in value_parameters.iter().enumerate() {
if index > 0 {
write!(f, ", ")?;
}
write!(f, "{identifier}: {type}")?;
}
}
write!(f, ")")?;
if let Some(return_type) = &self.return_type {
write!(f, " -> {return_type}")?;
}
Ok(())
}
}
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub enum StructType {
Unit {
name: Identifier,
},
Tuple {
name: Identifier,
fields: Vec<Type>,
},
Fields {
name: Identifier,
fields: HashMap<Identifier, Type>,
},
}
impl StructType {
pub fn name(&self) -> &Identifier {
match self {
StructType::Unit { name } => name,
StructType::Tuple { name, .. } => name,
StructType::Fields { name, .. } => name,
}
}
}
impl Display for StructType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
StructType::Unit { name } => write!(f, "{name}"),
StructType::Tuple { name, fields } => {
write!(f, "{name}(")?;
for (index, field) in fields.iter().enumerate() {
write!(f, "{field}")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, ")")
}
StructType::Fields { name, fields } => {
write!(f, "{name} {{")?;
for (index, (identifier, r#type)) in fields.iter().enumerate() {
write!(f, "{identifier}: {type}")?;
if index != fields.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "}}")
}
}
}
}
impl PartialOrd for StructType {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for StructType {
fn cmp(&self, other: &Self) -> Ordering {
match (self, other) {
(StructType::Unit { name: left_name }, StructType::Unit { name: right_name }) => {
left_name.cmp(right_name)
}
(StructType::Unit { .. }, _) => Ordering::Greater,
(
StructType::Tuple {
name: left_name,
fields: left_fields,
},
StructType::Tuple {
name: right_name,
fields: right_fields,
},
) => {
let name_cmp = left_name.cmp(right_name);
if name_cmp == Ordering::Equal {
left_fields.cmp(right_fields)
} else {
name_cmp
}
}
(StructType::Tuple { .. }, _) => Ordering::Greater,
(
StructType::Fields {
name: left_name,
fields: left_fields,
},
StructType::Fields {
name: right_name,
fields: right_fields,
},
) => {
let name_cmp = left_name.cmp(right_name);
if name_cmp == Ordering::Equal {
let len_cmp = left_fields.len().cmp(&right_fields.len());
if len_cmp == Ordering::Equal {
left_fields.iter().cmp(right_fields.iter())
} else {
len_cmp
}
} else {
name_cmp
}
}
(StructType::Fields { .. }, _) => Ordering::Greater,
}
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct EnumType {
pub name: Identifier,
pub variants: Vec<StructType>,
}
impl Display for EnumType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let EnumType { name, variants } = self;
write!(f, "enum {name} {{ ")?;
for (index, variant) in variants.iter().enumerate() {
write!(f, "{variant}")?;
if index != self.variants.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, " }}")
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum RangeableType {
Byte,
Character,
Float,
Integer,
}
impl Display for RangeableType {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
RangeableType::Byte => Type::Byte.fmt(f),
RangeableType::Character => Type::Character.fmt(f),
RangeableType::Float => Type::Float.fmt(f),
RangeableType::Integer => Type::Integer.fmt(f),
}
}
}
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct TypeConflict {
pub expected: Type,
pub actual: Type,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_type_any() {
let foo = Type::Any;
let bar = Type::Any;
foo.check(&bar).unwrap();
}
#[test]
fn check_type_boolean() {
let foo = Type::Boolean;
let bar = Type::Boolean;
foo.check(&bar).unwrap();
}
#[test]
fn check_type_byte() {
let foo = Type::Byte;
let bar = Type::Byte;
foo.check(&bar).unwrap();
}
#[test]
fn check_type_character() {
let foo = Type::Character;
let bar = Type::Character;
foo.check(&bar).unwrap();
}
#[test]
fn errors() {
let foo = Type::Integer;
let bar = Type::String { length: None };
assert_eq!(
foo.check(&bar),
Err(TypeConflict {
actual: bar.clone(),
expected: foo.clone()
})
);
assert_eq!(
bar.check(&foo),
Err(TypeConflict {
actual: foo.clone(),
expected: bar.clone()
})
);
let types = [
Type::Boolean,
Type::Float,
Type::Integer,
Type::List {
item_type: Box::new(Type::Integer),
length: 42,
},
Type::Range {
r#type: RangeableType::Integer,
},
Type::String { length: None },
];
for left in types.clone() {
for right in types.clone() {
if left == right {
continue;
}
assert_eq!(
left.check(&right),
Err(TypeConflict {
actual: right.clone(),
expected: left.clone()
})
);
}
}
}
}