Integers are internally represented as `i64`, and floating point numbers are represented as `f64`.
Operators that take numbers as arguments can either take integers or floating point numbers.
If one of the arguments is a floating point number, all others are converted to floating point numbers as well, and the resulting value is a floating point number as well.
Otherwise, the result is an integer.
### Variables
This crate allows to compile parameterizable formulas by using variables.
A variable is a literal in the formula, that does not contain whitespace or can be parsed as value.
The user needs to provide bindings to the variables for evaluation.
This is done with the `Configuration` trait.
Two structs implementing this trait are predefined.
There is `EmptyConfiguration`, that returns `None` for each request, and `HashMapConfiguration`, that stores mappings from literals to variables in a hash map.
Variables do not have fixed types in the expression itself, but aer typed by the configuration.
The `Configuration` trait contains a function that takes a string literal and returns a `Value` enum.
The variant of this enum decides the type on evaluation.
### Functions
This crate also allows to define arbitrary functions to be used in parsed expressions.
A function is defined as a `Function` instance.
It contains two properties, the `argument_amount` and the `function`.
The `function` is a boxed `Fn(&[Value]) -> Result<Value, Error>`.
The `argument_amount` is verified on execution by the crate and does not need to be verified by the `function`.
It determines the length of the slice that is passed to `function`.
See the examples section above for examples on how to construct a function instance.