Fixed aggregation operator
Manage sequence operators, which currently are `Chain` and `Token` on the stack without ever inserting unfinished sequence operator nodes into another node. Relates to #44
This commit is contained in:
parent
2e929ae0fe
commit
6f77471354
@ -4,7 +4,7 @@ use crate::{context::Context, error::*, value::Value};
|
||||
|
||||
mod display;
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum Operator {
|
||||
RootNode,
|
||||
|
||||
@ -93,9 +93,10 @@ impl Operator {
|
||||
|
||||
/// Returns true if chains of this operator should be flattened into one operator with many arguments.
|
||||
// Make this a const fn once #57563 is resolved
|
||||
fn is_flatten_chains(&self) -> bool {
|
||||
pub(crate) fn is_sequence(&self) -> bool {
|
||||
use crate::operator::Operator::*;
|
||||
match self {
|
||||
Operator::Tuple => true,
|
||||
Tuple | Chain => true,
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
@ -112,8 +113,8 @@ impl Operator {
|
||||
use crate::operator::Operator::*;
|
||||
match self {
|
||||
Add | Sub | Mul | Div | Mod | Exp | Eq | Neq | Gt | Lt | Geq | Leq | And | Or
|
||||
| Assign | Chain => Some(2),
|
||||
Tuple => None,
|
||||
| Assign => Some(2),
|
||||
Tuple | Chain => None,
|
||||
Not | Neg | RootNode => Some(1),
|
||||
Const { value: _ } => Some(0),
|
||||
VariableIdentifier { identifier: _ } => Some(0),
|
||||
@ -420,7 +421,9 @@ impl Operator {
|
||||
}
|
||||
}
|
||||
Tuple => {
|
||||
expect_operator_argument_amount(arguments.len(), 2)?;
|
||||
Ok(Value::Tuple(arguments.into()))
|
||||
|
||||
/*expect_operator_argument_amount(arguments.len(), 2)?;
|
||||
if let Value::Tuple(tuple) = &arguments[0] {
|
||||
let mut tuple = tuple.clone();
|
||||
if let Value::Tuple(tuple2) = &arguments[1] {
|
||||
@ -440,7 +443,7 @@ impl Operator {
|
||||
arguments[1].clone(),
|
||||
]))
|
||||
}
|
||||
}
|
||||
}*/
|
||||
}
|
||||
Assign => Err(EvalexprError::ContextNotManipulable),
|
||||
Chain => {
|
||||
@ -448,7 +451,7 @@ impl Operator {
|
||||
return Err(EvalexprError::wrong_operator_argument_amount(0, 1));
|
||||
}
|
||||
|
||||
Ok(arguments.get(1).cloned().unwrap_or(Value::Empty))
|
||||
Ok(arguments.last().cloned().unwrap_or(Value::Empty))
|
||||
}
|
||||
Const { value } => {
|
||||
expect_operator_argument_amount(arguments.len(), 0)?;
|
||||
|
140
src/tree/mod.rs
140
src/tree/mod.rs
@ -11,8 +11,7 @@ use crate::{
|
||||
operator::*,
|
||||
value::Value,
|
||||
};
|
||||
use std::error::Error;
|
||||
use std::any::Any;
|
||||
use std::mem;
|
||||
|
||||
mod display;
|
||||
mod iter;
|
||||
@ -34,10 +33,10 @@ mod iter;
|
||||
/// assert_eq!(node.eval_with_context(&context), Ok(Value::from(3)));
|
||||
/// ```
|
||||
///
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub struct Node {
|
||||
children: Vec<Node>,
|
||||
operator: Operator,
|
||||
children: Vec<Node>,
|
||||
}
|
||||
|
||||
impl Node {
|
||||
@ -368,6 +367,7 @@ impl Node {
|
||||
}
|
||||
|
||||
fn insert_back_prioritized(&mut self, node: Node, is_root_node: bool) -> EvalexprResult<()> {
|
||||
println!("Inserting {:?} into {:?}", node.operator, self.operator());
|
||||
if self.operator().precedence() < node.operator().precedence() || is_root_node
|
||||
// Right-to-left chaining
|
||||
|| (self.operator().precedence() == node.operator().precedence() && !self.operator().is_left_to_right() && !node.operator().is_left_to_right())
|
||||
@ -381,14 +381,13 @@ impl Node {
|
||||
|| (self.children.last().unwrap().operator().precedence()
|
||||
== node.operator().precedence() && !self.children.last().unwrap().operator().is_left_to_right() && !node.operator().is_left_to_right())
|
||||
{
|
||||
println!("Recursing into {:?}", self.children.last().unwrap().operator());
|
||||
self.children
|
||||
.last_mut()
|
||||
.unwrap()
|
||||
.insert_back_prioritized(node, false)
|
||||
} else if self.children.last().unwrap().operator().type_id() == node.operator().type_id() && node.operator().is_flatten_chains() && !self.children.last().unwrap().has_enough_children() {
|
||||
// The operators will be chained together, and the next value will be added to this nodes last child.
|
||||
Ok(())
|
||||
} else {
|
||||
println!("Rotating");
|
||||
if node.operator().is_leaf() {
|
||||
return Err(EvalexprError::AppendedToLeafNode);
|
||||
}
|
||||
@ -401,6 +400,7 @@ impl Node {
|
||||
Ok(())
|
||||
}
|
||||
} else {
|
||||
println!("Inserting as specified");
|
||||
self.children.push(node);
|
||||
Ok(())
|
||||
}
|
||||
@ -410,8 +410,63 @@ impl Node {
|
||||
}
|
||||
}
|
||||
|
||||
fn collapse_root_stack_to(root_stack: &mut Vec<Node>, mut root: Node, collapse_goal: &Node) -> EvalexprResult<Node> {
|
||||
loop {
|
||||
if let Some(mut potential_higher_root) = root_stack.pop() {
|
||||
// TODO I'm not sure about this >, as I have no example for different sequence operators with the same precedence
|
||||
if potential_higher_root.operator().precedence() > collapse_goal.operator().precedence() {
|
||||
potential_higher_root.children.push(root);
|
||||
root = potential_higher_root;
|
||||
} else {
|
||||
root_stack.push(potential_higher_root);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// This is the only way the topmost root node could have been removed
|
||||
return Err(EvalexprError::UnmatchedRBrace);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(root)
|
||||
}
|
||||
|
||||
fn collapse_all_sequences(root_stack: &mut Vec<Node>) -> EvalexprResult<()> {
|
||||
println!("Collapsing all sequences");
|
||||
println!("Initial root stack is: {:?}", root_stack);
|
||||
let mut root = if let Some(root) = root_stack.pop() {
|
||||
root
|
||||
} else {
|
||||
return Err(EvalexprError::UnmatchedRBrace);
|
||||
};
|
||||
|
||||
loop {
|
||||
println!("Root is: {:?}", root);
|
||||
if root.operator() == &Operator::RootNode {
|
||||
root_stack.push(root);
|
||||
break;
|
||||
}
|
||||
|
||||
if let Some(mut potential_higher_root) = root_stack.pop() {
|
||||
if root.operator().is_sequence() {
|
||||
potential_higher_root.children.push(root);
|
||||
root = potential_higher_root;
|
||||
} else {
|
||||
root_stack.push(potential_higher_root);
|
||||
root_stack.push(root);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// This is the only way the topmost root node could have been removed
|
||||
return Err(EvalexprError::UnmatchedRBrace);
|
||||
}
|
||||
}
|
||||
|
||||
println!("Root stack after collapsing all sequences is: {:?}", root_stack);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn tokens_to_operator_tree(tokens: Vec<Token>) -> EvalexprResult<Node> {
|
||||
let mut root = vec![Node::root_node()];
|
||||
let mut root_stack = vec![Node::root_node()];
|
||||
let mut last_token_is_rightsided_value = false;
|
||||
let mut token_iter = tokens.iter().peekable();
|
||||
|
||||
@ -443,14 +498,15 @@ pub(crate) fn tokens_to_operator_tree(tokens: Vec<Token>) -> EvalexprResult<Node
|
||||
Token::Not => Some(Node::new(Operator::Not)),
|
||||
|
||||
Token::LBrace => {
|
||||
root.push(Node::root_node());
|
||||
root_stack.push(Node::root_node());
|
||||
None
|
||||
}
|
||||
Token::RBrace => {
|
||||
if root.len() < 2 {
|
||||
if root_stack.len() <= 1 {
|
||||
return Err(EvalexprError::UnmatchedRBrace);
|
||||
} else {
|
||||
root.pop()
|
||||
collapse_all_sequences(&mut root_stack)?;
|
||||
root_stack.pop()
|
||||
}
|
||||
}
|
||||
|
||||
@ -475,9 +531,58 @@ pub(crate) fn tokens_to_operator_tree(tokens: Vec<Token>) -> EvalexprResult<Node
|
||||
Token::String(string) => Some(Node::new(Operator::value(Value::String(string)))),
|
||||
};
|
||||
|
||||
if let Some(node) = node {
|
||||
if let Some(root) = root.last_mut() {
|
||||
root.insert_back_prioritized(node, true)?;
|
||||
if let Some(mut node) = node {
|
||||
// Need to pop and then repush here, because Rust 1.33.0 cannot release the mutable borrow of root_stack before the end of this complete if-statement
|
||||
if let Some(mut root) = root_stack.pop() {
|
||||
if node.operator().is_sequence() {
|
||||
println!("Found a sequence operator");
|
||||
println!("Stack before sequence operation: {:?}, {:?}", root_stack, root);
|
||||
// If root.operator() and node.operator() are of the same variant, ...
|
||||
if mem::discriminant(root.operator()) == mem::discriminant(node.operator()) {
|
||||
// ... we create a new root node for the next expression in the sequence
|
||||
root.children.push(Node::root_node());
|
||||
root_stack.push(root);
|
||||
} else if root.operator() == &Operator::RootNode {
|
||||
// If the current root is an actual root node, we start a new sequence
|
||||
node.children.push(root);
|
||||
node.children.push(Node::root_node());
|
||||
root_stack.push(Node::root_node());
|
||||
root_stack.push(node);
|
||||
} else {
|
||||
// Otherwise, we combine the sequences based on their precedences
|
||||
// TODO I'm not sure about this <, as I have no example for different sequence operators with the same precedence
|
||||
if root.operator().precedence() < node.operator().precedence() {
|
||||
// If the new sequence has a higher precedence, it is part of the last element of the current root sequence
|
||||
if let Some(last_root_child) = root.children.pop() {
|
||||
node.children.push(last_root_child);
|
||||
node.children.push(Node::root_node());
|
||||
root_stack.push(root);
|
||||
root_stack.push(node);
|
||||
} else {
|
||||
// Once a sequence has been pushed on top of the stack, it also gets a child
|
||||
unreachable!()
|
||||
}
|
||||
} else {
|
||||
// If the new sequence doesn't have a higher precedence, then all sequences with a higher precedence are collapsed below this one
|
||||
root = collapse_root_stack_to(&mut root_stack, root, &node)?;
|
||||
node.children.push(root);
|
||||
root_stack.push(node);
|
||||
}
|
||||
}
|
||||
println!("Stack after sequence operation: {:?}", root_stack);
|
||||
} else if root.operator().is_sequence() {
|
||||
if let Some(mut last_root_child) = root.children.pop() {
|
||||
last_root_child.insert_back_prioritized(node, true)?;
|
||||
root.children.push(last_root_child);
|
||||
root_stack.push(root);
|
||||
} else {
|
||||
// Once a sequence has been pushed on top of the stack, it also gets a child
|
||||
unreachable!()
|
||||
}
|
||||
} else {
|
||||
root.insert_back_prioritized(node, true)?;
|
||||
root_stack.push(root);
|
||||
}
|
||||
} else {
|
||||
return Err(EvalexprError::UnmatchedRBrace);
|
||||
}
|
||||
@ -486,9 +591,12 @@ pub(crate) fn tokens_to_operator_tree(tokens: Vec<Token>) -> EvalexprResult<Node
|
||||
last_token_is_rightsided_value = token.is_rightsided_value();
|
||||
}
|
||||
|
||||
if root.len() > 1 {
|
||||
// In the end, all sequences are implicitly terminated
|
||||
collapse_all_sequences(&mut root_stack)?;
|
||||
|
||||
if root_stack.len() > 1 {
|
||||
Err(EvalexprError::UnmatchedLBrace)
|
||||
} else if let Some(root) = root.pop() {
|
||||
} else if let Some(root) = root_stack.pop() {
|
||||
Ok(root)
|
||||
} else {
|
||||
Err(EvalexprError::UnmatchedRBrace)
|
||||
|
@ -195,7 +195,9 @@ impl From<Value> for EvalexprResult<Value> {
|
||||
}
|
||||
|
||||
impl From<()> for Value {
|
||||
fn from(_: ()) -> Self { Value::Empty }
|
||||
fn from(_: ()) -> Self {
|
||||
Value::Empty
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -251,6 +251,7 @@ fn test_n_ary_functions() {
|
||||
context
|
||||
.set_value("five".to_string(), Value::Int(5))
|
||||
.unwrap();
|
||||
context.set_function("function_four".into(), Function::new(Some(0), Box::new(|_| {Ok(Value::Int(4))}))).unwrap();
|
||||
|
||||
assert_eq!(eval_with_context("avg(7, 5)", &context), Ok(Value::Int(6)));
|
||||
assert_eq!(
|
||||
@ -265,16 +266,20 @@ fn test_n_ary_functions() {
|
||||
eval_with_context("sub2 avg(3, 6)", &context),
|
||||
Ok(Value::Int(2))
|
||||
);
|
||||
dbg!(build_operator_tree("muladd(3, 6, -4)").unwrap());
|
||||
assert_eq!(
|
||||
eval_with_context("muladd(3, 6, -4)", &context),
|
||||
Ok(Value::Int(14))
|
||||
);
|
||||
assert_eq!(eval_with_context("count()", &context), Ok(Value::Int(0)));
|
||||
assert_eq!(eval_with_context("count((1, 2, 3))", &context), Ok(Value::Int(1)));
|
||||
assert_eq!(
|
||||
eval_with_context("count(3, 5.5, 2)", &context),
|
||||
Ok(Value::Int(3))
|
||||
);
|
||||
assert_eq!(eval_with_context("count 5", &context), Ok(Value::Int(1)));
|
||||
assert_eq!(eval_with_context("function_four()", &context), Ok(Value::Int(4)));
|
||||
assert_eq!(eval_with_context("function_four(())", &context), Err(EvalexprError::WrongFunctionArgumentAmount{expected: 0, actual: 1}));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -610,12 +615,46 @@ fn test_serde() {
|
||||
fn test_tuple_definitions() {
|
||||
assert_eq!(eval_empty("()"), Ok(()));
|
||||
assert_eq!(eval_int("(3)"), Ok(3));
|
||||
assert_eq!(eval_tuple("(3, 4)"), Ok(vec![Value::from(3), Value::from(4)]));
|
||||
assert_eq!(eval_tuple("2, (5, 6)"), Ok(vec![Value::from(2), Value::from(vec![Value::from(5), Value::from(6)])]));
|
||||
assert_eq!(
|
||||
eval_tuple("(3, 4)"),
|
||||
Ok(vec![Value::from(3), Value::from(4)])
|
||||
);
|
||||
assert_eq!(
|
||||
eval_tuple("2, (5, 6)"),
|
||||
Ok(vec![
|
||||
Value::from(2),
|
||||
Value::from(vec![Value::from(5), Value::from(6)])
|
||||
])
|
||||
);
|
||||
assert_eq!(eval_tuple("1, 2"), Ok(vec![Value::from(1), Value::from(2)]));
|
||||
assert_eq!(eval_tuple("1, 2, 3, 4"), Ok(vec![Value::from(1), Value::from(2), Value::from(3), Value::from(4)]));
|
||||
assert_eq!(eval_tuple("(1, 2, 3), 5, 6, (true, false, 0)"), Ok(vec![Value::from(vec![Value::from(1), Value::from(2), Value::from(3)]), Value::from(5), Value::from(6), Value::from(vec![Value::from(true), Value::from(false), Value::from(0)])]));
|
||||
assert_eq!(eval_tuple("1, (2)"), Ok(vec![Value::from(1), Value::from(2)]));
|
||||
assert_eq!(eval_tuple("1, ()"), Ok(vec![Value::from(1), Value::from(())]));
|
||||
assert_eq!(eval_tuple("1, ((2))"), Ok(vec![Value::from(1), Value::from(2)]));
|
||||
assert_eq!(
|
||||
eval_tuple("1, 2, 3, 4"),
|
||||
Ok(vec![
|
||||
Value::from(1),
|
||||
Value::from(2),
|
||||
Value::from(3),
|
||||
Value::from(4)
|
||||
])
|
||||
);
|
||||
assert_eq!(
|
||||
eval_tuple("(1, 2, 3), 5, 6, (true, false, 0)"),
|
||||
Ok(vec![
|
||||
Value::from(vec![Value::from(1), Value::from(2), Value::from(3)]),
|
||||
Value::from(5),
|
||||
Value::from(6),
|
||||
Value::from(vec![Value::from(true), Value::from(false), Value::from(0)])
|
||||
])
|
||||
);
|
||||
assert_eq!(
|
||||
eval_tuple("1, (2)"),
|
||||
Ok(vec![Value::from(1), Value::from(2)])
|
||||
);
|
||||
assert_eq!(
|
||||
eval_tuple("1, ()"),
|
||||
Ok(vec![Value::from(1), Value::from(())])
|
||||
);
|
||||
assert_eq!(
|
||||
eval_tuple("1, ((2))"),
|
||||
Ok(vec![Value::from(1), Value::from(2)])
|
||||
);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user