group_bot/assets/voxygen/shaders/rope-frag.glsl

239 lines
9.8 KiB
Plaintext
Raw Normal View History

2024-06-13 23:16:24 +00:00
#version 440 core
#define FIGURE_SHADER
#include <constants.glsl>
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
#if (FLUID_MODE == FLUID_MODE_LOW)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#elif (FLUID_MODE >= FLUID_MODE_MEDIUM)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
#endif
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
#include <globals.glsl>
#include <light.glsl>
#include <cloud.glsl>
#include <lod.glsl>
layout(location = 0) in vec3 f_pos;
// in float dummy;
// in vec3 f_col;
// in float f_ao;
// flat in uint f_pos_norm;
layout(location = 1) in vec3 f_norm;
layout(location = 2) in vec3 m_pos;
// in float f_alt;
// in vec4 f_shadow;
// in vec3 light_pos[2];
// #if (SHADOW_MODE == SHADOW_MODE_MAP)
// in vec4 sun_pos;
// #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
// const vec4 sun_pos = vec4(0.0);
// #endif
//struct ShadowLocals {
// mat4 shadowMatrices;
// mat4 texture_mat;
//};
//
//layout (std140)
//uniform u_light_shadows {
// ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192];
//};
layout (std140, set = 2, binding = 0)
uniform u_locals {
vec4 pos_a;
vec4 pos_b;
float rope_length;
};
layout(location = 0) out vec4 tgt_color;
layout(location = 1) out uvec4 tgt_mat;
void main() {
// vec2 texSize = textureSize(t_col_light, 0);
// vec4 col_light = texture(t_col_light, (f_uv_pos + 0.5) / texSize);
// vec3 f_col = col_light.rgb;
// float f_ao = col_light.a;
// vec4 f_col_light = texture(t_col_light, (f_uv_pos + 0.5) / textureSize(t_col_light, 0));
// vec3 f_col = f_col_light.rgb;
// float f_ao = f_col_light.a;
float f_ao = 1.0;
vec3 f_col = mix(
vec3(0.05, 0.03, 0.01),
vec3(0.1, 0.07, 0.05),
floor(abs(fract(m_pos.z * 10.0 + atan(m_pos.x, m_pos.y) * 0.159) - 0.5) * 6.0) / 3.0
);
#ifdef EXPERIMENTAL_BAREMINIMUM
tgt_color = vec4(simple_lighting(f_pos.xyz, f_col, f_ao), 1);
return;
#endif
// float /*f_light*/f_ao = textureProj(t_col_light, vec3(f_uv_pos, texSize)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// vec3 my_chunk_pos = (vec3((uvec3(f_pos_norm) >> uvec3(0, 9, 18)) & uvec3(0x1FFu)) - 256.0) / 2.0;
// tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0);
// float f_ao = 0;
// tgt_color = vec4(vec3(f_ao), 1.0);
// tgt_color = vec4(f_col, 1.0);
// return;
// vec3 du = dFdx(f_pos);
// vec3 dv = dFdy(f_pos);
// vec3 f_norm = normalize(cross(du, dv));
// vec4 light_pos[2];
//#if (SHADOW_MODE == SHADOW_MODE_MAP)
// // for (uint i = 0u; i < light_shadow_count.z; ++i) {
// // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/;
// // }
// vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/;
//#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
// vec4 sun_pos = vec4(0.0);
//#endif
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x); */
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);
/* float sun_shade_frac = horizon_at(f_pos, sun_dir);
float moon_shade_frac = horizon_at(f_pos, moon_dir); */
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM)
float f_alt = alt_at(f_pos.xy);
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW)
float f_alt = f_pos.z;
#endif
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#endif
float moon_shade_frac = 1.0;// horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5);
// NOTE: current assumption is that moon and sun shouldn't be out at the sae time.
// This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow
// for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally).
// float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
// DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos);
DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos);
DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/);
vec3 surf_color = f_col;
float alpha = 1.0;
const float n2 = 1.5;
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
vec3 emitted_light, reflected_light;
// vec3 light_frac = /*vec3(1.0);*//*vec3(max(dot(f_norm, -sun_dir) * 0.5 + 0.5, 0.0));*/light_reflection_factor(f_norm, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha);
// vec3 point_light = light_at(f_pos, f_norm);
// vec3 light, diffuse_light, ambient_light;
//get_sun_diffuse(f_norm, time_of_day.x, view_dir, k_a * point_shadow * (shade_frac * 0.5 + light_frac * 0.5), k_d * point_shadow * shade_frac, k_s * point_shadow * shade_frac, alpha, emitted_light, reflected_light);
float max_light = 0.0;
// reflected_light *= point_shadow * shade_frac;
// emitted_light *= point_shadow * max(shade_frac, MIN_SHADOW);
// max_light *= point_shadow * shade_frac;
// reflected_light *= point_shadow;
// emitted_light *= point_shadow;
// max_light *= point_shadow;
vec3 cam_attenuation = vec3(1);
float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1));
vec3 mu = medium.x == MEDIUM_WATER ? MU_WATER : vec3(0.0);
#if (FLUID_MODE >= FLUID_MODE_MEDIUM)
cam_attenuation =
medium.x == MEDIUM_WATER ? compute_attenuation_point(cam_pos.xyz, view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos)
: compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz);
#endif
// Prevent the sky affecting light when underground
float not_underground = clamp((f_pos.z - f_alt) / 128.0 + 1.0, 0.0, 1.0);
max_light += get_sun_diffuse2(sun_info, moon_info, f_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
// TODO: Hack to add a small amount of underground ambient light to the scene
reflected_light += vec3(0.01, 0.02, 0.03) * (1.0 - not_underground);
// Apply baked AO
float ao = f_ao * sqrt(f_ao);//0.25 + f_ao * 0.75; ///*pow(f_ao, 0.5)*/f_ao * 0.85 + 0.15;
reflected_light *= ao;
emitted_light *= ao;
// Apply point light AO
float point_shadow = shadow_at(f_pos, f_norm);
reflected_light *= point_shadow;
emitted_light *= point_shadow;
/* reflected_light *= cloud_shadow(f_pos); */
/* vec3 point_light = light_at(f_pos, f_norm);
emitted_light += point_light;
reflected_light += point_light; */
// get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 2.0, emitted_light, reflected_light);
// get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0);
// diffuse_light *= point_shadow;
// ambient_light *= point_shadow;
// vec3 point_light = light_at(f_pos, f_norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// vec3 surf_color = illuminate(srgb_to_linear(highlight_col.rgb * f_col), light, diffuse_light, ambient_light);
float reflectance = 0.0;
// TODO: Do reflectance properly like this later
vec3 reflect_color = vec3(0);
surf_color = illuminate(max_light, view_dir, mix(surf_color * emitted_light, reflect_color, reflectance), mix(surf_color * reflected_light, reflect_color, reflectance));
// if ((flags & 1) == 1 && int(cam_mode) == 1) {
// float distance = distance(vec3(cam_pos), focus_pos.xyz) - 2;
// float opacity = clamp(distance / distance_divider, 0, 1);
// // if(threshold_matrix[int(gl_FragCoord.x) % 4][int(gl_FragCoord.y) % 4] > opacity) {
// // discard;
// // return;
// // }
// }
tgt_color = vec4(surf_color, 1.0);
tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), MAT_FIGURE);
}