828 lines
32 KiB
Plaintext
Raw Normal View History

2024-06-13 19:16:24 -04:00
#ifndef SKY_GLSL
#define SKY_GLSL
#include <random.glsl>
#include <srgb.glsl>
#include <shadows.glsl>
#include <globals.glsl>
#include <rain_occlusion.glsl>
// Information about an approximately directional light, like the sun or moon.
struct DirectionalLight {
// vec3 dir;
float shadow;
// Fully blocks all light, including ambience
float block;
// vec3 color;
// float brightness;
};
const float PI = 3.141592653;
const vec3 SKY_DAWN_TOP = vec3(0.10, 0.1, 0.10);
const vec3 SKY_DAWN_MID = vec3(1.2, 0.3, 0.2);
const vec3 SKY_DAWN_BOT = vec3(0.0, 0.1, 0.23);
const vec3 DAWN_LIGHT = vec3(5.0, 2.0, 1.15);
const vec3 SUN_HALO_DAWN = vec3(8.2, 3.0, 2.1);
const vec3 SKY_DAY_TOP = vec3(0.1, 0.5, 0.9);
const vec3 SKY_DAY_MID = vec3(0.18, 0.28, 0.6);
const vec3 SKY_DAY_BOT = vec3(0.1, 0.2, 0.3);
const vec3 DAY_LIGHT = vec3(3.8, 3.0, 1.8);
const vec3 SUN_HALO_DAY = vec3(0.25, 0.25, 0.001);
const vec3 SKY_DUSK_TOP = vec3(1.06, 0.1, 0.20);
const vec3 SKY_DUSK_MID = vec3(2.5, 0.3, 0.1);
const vec3 SKY_DUSK_BOT = vec3(0.0, 0.1, 0.23);
const vec3 DUSK_LIGHT = vec3(8.0, 1.5, 0.15);
const vec3 SUN_HALO_DUSK = vec3(10.2, 3.0, 0.1);
const vec3 SKY_NIGHT_TOP = vec3(0.001, 0.001, 0.0025);
const vec3 SKY_NIGHT_MID = vec3(0.001, 0.005, 0.02);
const vec3 SKY_NIGHT_BOT = vec3(0.002, 0.004, 0.004);
const vec3 NIGHT_LIGHT = vec3(5.0, 0.75, 0.2);
// const vec3 NIGHT_LIGHT = vec3(0.0, 0.0, 0.0);
// Linear RGB, scattering coefficients for atmosphere at roughly R, G, B wavelengths.
//
// See https://en.wikipedia.org/wiki/Diffuse_sky_radiation
const vec3 MU_SCATTER = vec3(0.05, 0.10, 0.23);
const float SUN_COLOR_FACTOR = 5.0;//6.0;// * 1.5;//1.8;
const float MOON_COLOR_FACTOR = 5.0;//6.0;// * 1.5;//1.8;
const float UNDERWATER_MIST_DIST = 100.0;
const float PERSISTENT_AMBIANCE = 1.0 / 32.0;// 1.0 / 80; // 1.0 / 512; // 0.00125 // 0.1;// 0.025; // 0.1;
// Glow from static light sources
// Allowed to be > 1 due to HDR
const vec3 GLOW_COLOR = vec3(0.89, 0.95, 0.52);
// Calculate glow from static light sources, + some noise for flickering.
// TODO: Optionally disable the flickering for performance?
vec3 glow_light(vec3 pos) {
#if (SHADOW_MODE <= SHADOW_MODE_NONE)
return GLOW_COLOR;
#else
return GLOW_COLOR * (1.0 + (noise_3d(vec3(pos.xy * 0.005, tick.x * 0.5)) - 0.5) * 0.5);
#endif
}
//vec3 get_sun_dir(float time_of_day) {
// const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0);
//
// float sun_angle_rad = time_of_day * TIME_FACTOR;
// // return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad));
// return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad));
//}
//
//vec3 get_moon_dir(float time_of_day) {
// const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0);
//
// float moon_angle_rad = time_of_day * TIME_FACTOR;
// // -cos((60+60*4)/360*2*pi)-0.5 = 0
// // -cos((60+60*5)/360*2*pi)-0.5 = -0.5
// // -cos((60+60*6)/360*2*pi)-0.5 = 0
// //
// // i.e. moon out from (60*5)/360*24 = 20:00 to (60*7/360*24) = 28:00 = 04:00.
// //
// // Then sun out from 04:00 to 20:00.
// return normalize(-vec3(sin(moon_angle_rad), 0.0, cos(moon_angle_rad) - 0.5));
//}
float CLOUD_AVG_ALT = view_distance.z + (view_distance.w - view_distance.z) * 1.25;
const float wind_speed = 0.25;
vec2 wind_offset = vec2(time_of_day.y * wind_speed * (3600.0 * 24.0));
float cloud_scale = view_distance.z / 150.0;
layout(set = 0, binding = 5) uniform texture2D t_alt;
layout(set = 0, binding = 6) uniform sampler s_alt;
// Transforms coordinate in the range 0..WORLD_SIZE to 0..1
vec2 wpos_to_uv(vec2 wpos) {
// Want: (pixel + 0.5) / W
vec2 texSize = textureSize(sampler2D(t_alt, s_alt), 0);
vec2 uv_pos = (wpos + 16) / (32.0 * texSize);
return vec2(uv_pos.x, /*1.0 - */uv_pos.y);
}
// Weather texture
layout(set = 0, binding = 12) uniform texture2D t_weather;
layout(set = 0, binding = 13) uniform sampler s_weather;
vec4 sample_weather(vec2 wpos) {
return textureLod(sampler2D(t_weather, s_weather), wpos_to_uv(wpos), 0);
}
float cloud_tendency_at(vec2 wpos) {
return sample_weather(wpos).r;
}
float rain_density_at(vec2 wpos) {
return sample_weather(wpos).g;
}
float cloud_shadow(vec3 pos, vec3 light_dir) {
#if (CLOUD_MODE <= CLOUD_MODE_MINIMAL)
return 1.0;
#else
vec2 xy_offset = light_dir.xy * ((CLOUD_AVG_ALT - pos.z) / -light_dir.z);
// Fade out shadow if the sun angle is too steep (simulates a widening penumbra with distance)
const vec2 FADE_RANGE = vec2(1500, 10000);
float fade = 1.0 - clamp((length(xy_offset) - FADE_RANGE.x) / (FADE_RANGE.y - FADE_RANGE.x), 0, 1);
float cloud = cloud_tendency_at(pos.xy + focus_off.xy - xy_offset);
return clamp(1 - fade * cloud * 16.0, 0, 1);
#endif
}
float magnetosphere = sin(time_of_day.y);
#if (CLOUD_MODE <= CLOUD_MODE_LOW)
const vec3 magnetosphere_tint = vec3(1);
#else
float _magnetosphere2 = pow(magnetosphere, 2) * 2 - 1;
float _magnetosphere3 = pow(_magnetosphere2, 2) * 2 - 1;
vec3 _magnetosphere_change = vec3(1.0) + vec3(
(magnetosphere + 1.0) * 2.0,
(-_magnetosphere2 + 1.0) * 2.0,
(-_magnetosphere3 + 1.0) * 1.0
) * 0.4;
vec3 magnetosphere_tint = _magnetosphere_change / length(_magnetosphere_change);
#endif
#if (CLOUD_MODE > CLOUD_MODE_NONE)
float emission_strength = clamp((magnetosphere - 0.3) * 1.3, 0, 1) * max(-moon_dir.z, 0);
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
float emission_br = abs(pow(fract(time_of_day.y * 0.5) * 2 - 1, 2));
#else
float emission_br = 0.5;
#endif
#endif
float get_sun_brightness(/*vec3 sun_dir*/) {
return max(-sun_dir.z + 0.5, 0.0);
}
float get_moon_brightness(/*vec3 moon_dir*/) {
return max(-moon_dir.z + 0.6, 0.0) * 0.1;
}
vec3 get_sun_color(/*vec3 sun_dir*/) {
vec3 light = (sun_dir.x > 0) ? DUSK_LIGHT : DAWN_LIGHT;
return mix(
mix(
light * magnetosphere_tint,
NIGHT_LIGHT,
max(sun_dir.z, 0)
),
DAY_LIGHT,
max(-sun_dir.z, 0)
);
}
// Average sky colour (i.e: perfectly scattered light from the sky)
vec3 get_sky_color(/*vec3 sun_dir*/) {
return mix(
mix(
(SKY_DUSK_TOP + SKY_DUSK_MID) / 2 * magnetosphere_tint,
(SKY_NIGHT_TOP + SKY_NIGHT_MID) / 2,
max(sun_dir.z, 0)
),
(SKY_DAY_TOP + SKY_DAY_MID) / 2,
max(-sun_dir.z, 0)
);
}
vec3 get_moon_color(/*vec3 moon_dir*/) {
return vec3(0.5, 0.5, 1.6);
}
DirectionalLight get_sun_info(vec4 _dir, float shade_frac/*, vec4 light_pos[2]*/, /*vec4 sun_pos*/vec3 f_pos) {
float shadow = shade_frac;
float block = 1.0;
#ifdef HAS_SHADOW_MAPS
#if (SHADOW_MODE == SHADOW_MODE_MAP)
if (sun_dir.z < /*0.6*/0.0) {
/* ShadowLocals sun_shadow = shadowMats[0];
vec4 sun_pos = sun_shadow.texture_mat * vec4(f_pos, 1.0); */
// #if (SHADOW_MODE == SHADOW_MODE_MAP)
// // for (uint i = 0u; i < light_shadow_count.z; ++i) {
// // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/;
// // }
// #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
// vec4 sun_pos = vec4(0.0);
// #endif
shadow = min(shadow, ShadowCalculationDirected(/*sun_pos, *//*0u*/f_pos));
}
#endif
#endif
return DirectionalLight(/*dir, */shadow, block/*, get_sun_color(dir), get_sun_brightness(dir)*/);
}
DirectionalLight get_moon_info(vec4 _dir, float shade_frac/*, vec4 light_pos[2]*/) {
float shadow = shade_frac;
float block = 1.0;
// #ifdef HAS_SHADOW_MAPS
// shadow = min(shade_frac, ShadowCalculationDirected(light_pos, 1u));
// #endif
return DirectionalLight(/*dir, */shadow, block/*, get_moon_color(dir), get_moon_brightness(dir)*/);
}
const float LIGHTNING_HEIGHT = 25.0;
const float MAX_LIGHTNING_PERIOD = 5.0;
float lightning_intensity() {
float time_since_lightning = time_since(last_lightning.w);
return
// Strength
1000000
// Flash
* max(0.0, 1.0 - time_since_lightning * 1.0)
// Reverb
* max(sin(time_of_day.x * 0.4), 0.0);
}
vec3 lightning_at(vec3 wpos) {
float time_since_lightning = time_since(last_lightning.w);
if (time_since_lightning < MAX_LIGHTNING_PERIOD) {
vec3 diff = wpos + focus_off.xyz - (last_lightning.xyz + vec3(0, 0, LIGHTNING_HEIGHT));
float dist = length(diff);
return vec3(0.5, 0.8, 1.0)
* lightning_intensity()
// Attenuation
/ pow(50.0 + dist, 2);
} else {
return vec3(0.0);
}
}
// // Calculates extra emission and reflectance (due to sunlight / moonlight).
// //
// // reflectence = k_a * i_a + i_a,persistent
// // emittence = Σ { m ∈ lights } i_m * shadow_m * get_light_reflected(light_m)
// //
// // Note that any shadowing to be done that would block the sun and moon, aside from heightmap shadowing (that will be
// // implemented sooon), should be implicitly provided via k_a, k_d, and k_s. For instance, shadowing via ambient occlusion.
// //
// // Also note that the emitted light calculation is kind of lame... we probabbly need something a bit nicer if we ever want to do
// // anything interesting here.
// // void get_sun_diffuse(vec3 norm, float time_of_day, out vec3 light, out vec3 diffuse_light, out vec3 ambient_light, float diffusion
// void get_sun_diffuse(vec3 norm, float time_of_day, vec3 dir, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, out vec3 emitted_light, out vec3 reflected_light) {
// const float SUN_AMBIANCE = 0.1 / 2.0;// 0.1 / 3.0;
//
// vec3 sun_dir = get_sun_dir(time_of_day);
// vec3 moon_dir = get_moon_dir(time_of_day);
//
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);
//
// vec3 sun_color = get_sun_color(sun_dir);
// vec3 moon_color = get_moon_color(moon_dir);
//
// vec3 sun_chroma = sun_color * sun_light;
// vec3 moon_chroma = moon_color * moon_light;
//
// /* float NLsun = max(dot(-norm, sun_dir), 0);
// float NLmoon = max(dot(-norm, moon_dir), 0);
// vec3 E = -dir; */
//
// // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5);
// // float ambient_sides = 0.5 - 0.5 * abs(dot(-norm, sun_dir));
//
// emitted_light = k_a * (ambient_sides + vec3(SUN_AMBIANCE * sun_light + moon_light)) + PERSISTENT_AMBIANCE;
// // TODO: Add shadows.
// reflected_light =
// sun_chroma * light_reflection_factor(norm, dir, sun_dir, k_d, k_s, alpha) +
// moon_chroma * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha);
//
// /* light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE;
// diffuse_light =
// sun_chroma * mix(1.0, max(dot(-norm, sun_dir) * 0.5 + 0.5, 0.0), diffusion) +
// moon_chroma * mix(1.0, pow(dot(-norm, moon_dir) * 2.0, 2.0), diffusion) +
// PERSISTENT_AMBIANCE;
// ambient_light = vec3(SUN_AMBIANCE * sun_light + moon_light); */
// }
// Returns computed maximum intensity.
//
// wpos is the position of this fragment.
// mu is the attenuation coefficient for any substance on a horizontal plane.
// cam_attenuation is the total light attenuation due to the substance for beams between the point and the camera.
// surface_alt is the altitude of the attenuating surface.
float get_sun_diffuse2(DirectionalLight sun_info, DirectionalLight moon_info, vec3 norm, vec3 dir, vec3 wpos, vec3 mu, vec3 cam_attenuation, float surface_alt, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, vec3 voxel_norm, float voxel_lighting, out vec3 emitted_light, out vec3 reflected_light) {
const vec3 SUN_AMBIANCE = MU_SCATTER;
#ifdef EXPERIMENTAL_PHOTOREALISTIC
const vec3 MOON_AMBIANCE = MU_SCATTER;
#else
// Boost ambiance, because we don't properly compensate for pupil dilation (which should occur *before* HDR,
// not in the end user's eye). Also, real nights are too dark to be fun.
const vec3 MOON_AMBIANCE = vec3(0.15, 0.25, 0.23) * 5;
#endif
/* vec3 sun_dir = sun_info.dir;
vec3 moon_dir = moon_info.dir; */
vec3 sun_dir = sun_dir.xyz;
vec3 moon_dir = moon_dir.xyz;
float sun_light = get_sun_brightness(/*sun_dir*/) * sun_info.block;//sun_info.brightness;;
float moon_light = get_moon_brightness(/*moon_dir*/) * moon_info.block * ambiance;//moon_info.brightness;
vec3 sun_color = get_sun_color(/*sun_dir*/) * SUN_COLOR_FACTOR;//sun_info.color * SUN_COLOR_FACTOR;
vec3 moon_color = get_moon_color(/*moon_dir*/) * MOON_COLOR_FACTOR;//moon_info.color;
// If the sun is facing the wrong way, we currently just want zero light, hence default point is wpos.
vec3 sun_attenuation = compute_attenuation(wpos, -sun_dir, mu, surface_alt, wpos);
vec3 moon_attenuation = compute_attenuation(wpos, -moon_dir, mu, surface_alt, wpos);
vec3 sun_chroma = sun_color * sun_light * cam_attenuation * sun_attenuation;
vec3 moon_chroma = moon_color * moon_light * cam_attenuation * moon_attenuation;
// #ifdef HAS_SHADOW_MAPS
// float sun_shadow = ShadowCalculationDirected(light_pos, 0u);
// float moon_shadow = ShadowCalculationDirected(light_pos, 1u);
// #else
// float sun_shadow = 1.0;
// float moon_shadow = 1.0;
// #endif
float sun_shadow = sun_info.shadow * cloud_shadow(wpos, sun_dir);
float moon_shadow = moon_info.shadow * cloud_shadow(wpos, moon_dir);
// https://en.m.wikipedia.org/wiki/Diffuse_sky_radiation
//
// HdRd radiation should come in at angle normal to us.
// const float H_d = 0.23;
//
// Let β be the angle from horizontal
// (for objects exposed to the sky, where positive when sloping towards south and negative when sloping towards north):
//
// sin β = (north ⋅ norm) / |north||norm|
// = dot(vec3(0, 1, 0), norm)
//
// cos β = sqrt(1.0 - dot(vec3(0, 1, 0), norm))
//
// Let h be the hour angle (180/0.0 at midnight, 90/1.0 at dawn, 0/0.0 at noon, -90/-1.0 at dusk, -180 at midnight/0.0):
// cos h = (midnight ⋅ -light_dir) / |midnight||-light_dir|
// = (noon ⋅ light_dir) / |noon||light_dir|
// = dot(vec3(0, 0, 1), light_dir)
//
// Let φ be the latitude at this point. 0 at equator, -90 at south pole / 90 at north pole.
//
// Let δ be the solar declination (angular distance of the sun's rays north [or south[]
// of the equator), i.e. the angle made by the line joining the centers of the sun and Earth with its projection on the
// equatorial plane. Caused by axial tilt, and 0 at equinoxes. Normally varies between -23.45 and 23.45 degrees.
//
// Let α (the solar altitude / altitud3 angle) be the vertical angle between the projection of the sun's rays on the
// horizontal plane and the direction of the sun's rays (passing through a point).
//
// Let Θ_z be the vertical angle between sun's rays and a line perpendicular to the horizontal plane through a point,
// i.e.
//
// Θ_z = (π/2) - α
//
// i.e. cos Θ_z = sin α and
// cos α = sin Θ_z
//
// Let γ_s be the horizontal angle measured from north to the horizontal projection of the sun's rays (positive when
// measured westwise).
//
// cos Θ_z = cos φ cos h cos δ + sin φ sin δ
// cos γ_s = sec α (cos φ sin δ - cos δ sin φ cos h)
// = (1 / √(1 - cos² Θ_z)) (cos φ sin δ - cos δ sin φ cos h)
// sin γ_s = sec α cos δ sin h
// = (1 / cos α) cos δ sin h
// = (1 / sin Θ_z) cos δ sin h
// = (1 / √(1 - cos² Θ_z)) cos δ sin h
//
// R_b = (sin(δ)sin(φ - β) + cos(δ)cos(h)cos(φ - β))/(sin(δ)sin(φ) + cos(δ)cos(h)cos(φ))
//
// Assuming we are on the equator (i.e. φ = 0), and there is no axial tilt or we are at an equinox (i.e. δ = 0):
//
// cos Θ_z = 1 * cos h * 1 + 0 * 0 = cos h
// cos γ_s = (1 / √(1 - cos² h)) (1 * 0 - 1 * 0 * cos h)
// = (1 / √(1 - cos² h)) * 0
// = 0
// sin γ_s = (1 / √(1 - cos² h)) * sin h
// = sin h / sin h
// = 1
//
// R_b = (0 * sin(0 - β) + 1 * cos(h) * cos(0 - β))/(0 * 0 + 1 * cos(h) * 1)
// = (cos(h)cos(-β)) / cos(H)
// = cos(-β), the angle from horizontal.
//
// NOTE: cos(-β) = cos(β).
// float cos_sun = dot(norm, /*-sun_dir*/vec3(0, 0, 1));
// float cos_moon = dot(norm, -moon_dir);
//
// Let ζ = diffuse reflectance of surrounding ground for solar radiation, then we have
//
// R_d = (1 + cos β) / 2
// R_r = ζ (1 - cos β) / 2
//
// H_t = H_b R_b + H_d R_d + (H_b + H_d) R_r
float sin_beta = dot(vec3(0, 1, 0), norm);
float R_b = sqrt(max(0.0, 1.0 - sin_beta * sin_beta));
// Rough estimate of diffuse reflectance of rest of ground.
// NOTE: zeta should be close to 0.7 with snow cover, 0.2 normally? Maybe?
vec3 zeta = max(vec3(0.2), k_d * (1.0 - k_s));//vec3(0.2);// k_d * (1.0 - k_s);
float R_d = (1 + R_b) * 0.5;
vec3 R_r = zeta * (1.0 - R_b) * 0.5;
//
// We can break this down into:
// H_t_b = H_b * (R_b + R_r) = light_intensity * (R_b + R_r)
// H_t_r = H_d * (R_d + R_r) = light_intensity * (R_d + R_r)
vec3 R_t_b = R_b + R_r;
vec3 R_t_r = R_d + R_r;
// vec3 half_vec = normalize(-norm + dir);
#ifdef EXPERIMENTAL_PHOTOREALISTIC
vec3 lrf = light_reflection_factor(norm, dir, -norm, k_d, vec3(0.0), alpha, voxel_norm, voxel_lighting);
#else
// In practice, for gameplay purposes, we often want extra light at earlier and later times, so we use a
// non-physical LRF to boost light during dawn and dusk.
float lrf = pow(dot(norm, vec3(0, 0, 1)) + 1, 2) * 0.25;
#endif
vec3 light_frac = R_t_b * (sun_chroma * SUN_AMBIANCE + moon_chroma * MOON_AMBIANCE) * lrf;
// vec3 light_frac = /*vec3(1.0)*//*H_d * */
// SUN_AMBIANCE * /*sun_light*/sun_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_sun) * 0.5), vec3(k_s * (1.0 - cos_sun) * 0.5), alpha) +
// MOON_AMBIANCE * /*sun_light*/moon_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_moon) * 0.5), vec3(k_s * (1.0 - cos_moon) * 0.5), alpha);
/* float NLsun = max(dot(-norm, sun_dir), 0);
float NLmoon = max(dot(-norm, moon_dir), 0);
vec3 E = -dir; */
// Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = 0.0;
// float ambient_sides = 0.5 - 0.5 * min(abs(dot(-norm, sun_dir)), abs(dot(-norm, moon_dir)));
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5);
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5);
emitted_light = light_frac;// + k_a * PERSISTENT_AMBIANCE * ambiance * 0.1 * MU_SCATTER;
// emitted_light = k_a * light_frac * (/*ambient_sides + */SUN_AMBIANCE * /*sun_light*/sun_chroma + /*vec3(moon_light)*/MOON_AMBIANCE * moon_chroma) + PERSISTENT_AMBIANCE;
vec3 emission = vec3(0);
#if (CLOUD_MODE > CLOUD_MODE_NONE)
if (emission_strength > 0.0) {
emission = mix(vec3(0, 0.5, 1), vec3(1, 0, 0), emission_br) * emission_strength * 0.025;
}
#endif
#ifdef FLASHING_LIGHTS_ENABLED
vec3 lightning = lightning_at(wpos);
#else
vec3 lightning = vec3(0);
#endif
reflected_light = R_t_r * (
(1.0 - SUN_AMBIANCE) * sun_chroma * sun_shadow * (light_reflection_factor(norm, dir, sun_dir, k_d, k_s, alpha, voxel_norm, voxel_lighting) /*+
light_reflection_factor(norm, dir, normalize(sun_dir + vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha) +
light_reflection_factor(norm, dir, normalize(sun_dir - vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha)*/) +
(1.0 - MOON_AMBIANCE) * moon_chroma * moon_shadow * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha, voxel_norm, voxel_lighting) +
emission
) + lightning;
/* light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE;
diffuse_light =
sun_chroma * mix(1.0, max(dot(-norm, sun_dir) * 0.5 + 0.5, 0.0), diffusion) +
moon_chroma * mix(1.0, pow(dot(-norm, moon_dir) * 2.0, 2.0), diffusion) +
PERSISTENT_AMBIANCE;
ambient_light = vec3(SUN_AMBIANCE * sun_light + moon_light); */
return rel_luminance(emitted_light + reflected_light);//rel_luminance(emitted_light + reflected_light);//sun_chroma + moon_chroma + PERSISTENT_AMBIANCE;
}
// This has been extracted into a function to allow quick exit when detecting a star.
float is_star_at(vec3 dir) {
float star_scale = 80.0;
// Star positions
vec3 pos = (floor(dir * star_scale) - 0.5) / star_scale;
// Noisy offsets
pos += (3.0 / star_scale) * (1.0 + hash(pos.yxzz) * 0.85);
// Find distance to fragment
float dist = length(pos - dir);
// Star threshold
//if (dist < 0.0015) {
// return 2.5;
//}
//return 0.0;
#if (CLOUD_MODE == CLOUD_MODE_NONE)
const float power = 5.0;
#else
const float power = 50.0;
#endif
return power * max(sun_dir.z, 0.1) / (1.0 + pow(dist * 750, 8));
}
vec3 get_sky_light(vec3 dir, bool with_stars) {
// Add white dots for stars. Note these flicker and jump due to FXAA
float star = 0.0;
if (with_stars) {
vec3 star_dir = sun_dir.xyz * dir.z + cross(sun_dir.xyz, vec3(0, 1, 0)) * dir.x + vec3(0, 1, 0) * dir.y;
star = is_star_at(star_dir);
}
vec3 sky_twilight_top = vec3(0.0, 0.0, 0.0);
vec3 sky_twilight_mid = vec3(0.0, 0.0, 0.0);
vec3 sky_twilight_bot = vec3(0.0, 0.0, 0.0);
if (sun_dir.x > 0) {
sky_twilight_top = SKY_DUSK_TOP;
sky_twilight_mid = SKY_DUSK_MID;
sky_twilight_bot = SKY_DUSK_BOT;
} else {
sky_twilight_top = SKY_DAWN_TOP;
sky_twilight_mid = SKY_DAWN_MID;
sky_twilight_bot = SKY_DAWN_BOT;
}
vec3 sky_top = mix(
mix(
sky_twilight_top * magnetosphere_tint,
SKY_NIGHT_TOP,
pow(max(sun_dir.z, 0.0), 0.2)
) + star,
SKY_DAY_TOP,
max(-sun_dir.z, 0)
);
vec3 sky_mid = mix(
mix(
sky_twilight_mid * magnetosphere_tint,
SKY_NIGHT_MID,
pow(max(sun_dir.z, 0.0), 0.1)
),
SKY_DAY_MID,
max(-sun_dir.z, 0)
);
vec3 sky_bot = mix(
mix(
sky_twilight_bot * magnetosphere_tint,
SKY_NIGHT_BOT,
pow(max(sun_dir.z, 0.0), 0.2)
),
SKY_DAY_BOT,
max(-sun_dir.z, 0)
);
vec3 sky_color = mix(
mix(
sky_mid,
sky_bot,
max(-dir.z, 0)
),
sky_top,
max(dir.z, 0)
);
return sky_color * magnetosphere_tint;
}
vec3 get_sky_color(vec3 dir, vec3 origin, vec3 f_pos, float quality, bool with_features, float refractionIndex, bool fake_clouds, float sun_shade_frac) {
// Sky color
vec3 sun_dir = sun_dir.xyz;
vec3 moon_dir = moon_dir.xyz;
// Sun
const vec3 SUN_SURF_COLOR = vec3(1.5, 0.9, 0.35) * 10.0;
vec3 sun_halo_color = mix(
(sun_dir.x > 0 ? SUN_HALO_DUSK : SUN_HALO_DAWN)* magnetosphere_tint,
SUN_HALO_DAY,
pow(max(-sun_dir.z, 0.0), 0.5)
);
float sun_halo_power = 20.0;
#if (CLOUD_MODE == CLOUD_MODE_NONE)
if (true) {
#else
if (fake_clouds || medium.x == MEDIUM_WATER) {
#endif
sun_halo_power = 30.0;
sun_halo_color *= 0.01;
}
vec3 sun_halo = sun_halo_color * 25 * pow(max(dot(dir, -sun_dir), 0), sun_halo_power);
vec3 sun_surf = vec3(0);
if (with_features) {
float angle = 0.00035;
sun_surf = clamp((dot(dir, -sun_dir) - (1.0 - angle)) * 4 / angle, 0, 1)
* SUN_SURF_COLOR
* SUN_COLOR_FACTOR
* sun_shade_frac;
}
#if (CLOUD_MODE == CLOUD_MODE_NONE)
if (true) {
#else
if (fake_clouds || medium.x == MEDIUM_WATER) {
#endif
sun_surf *= 0.1;
}
vec3 sun_light = sun_halo + sun_surf;
// Moon
const vec3 MOON_SURF_COLOR = vec3(0.7, 1.0, 1.5) * 250.0;
const vec3 MOON_HALO_COLOR = vec3(0.015, 0.015, 0.05) * 250;
vec3 moon_halo_color = MOON_HALO_COLOR;
float moon_halo_power = 20.0;
vec3 moon_surf = vec3(0);
if (with_features) {
float angle = 0.00035;
moon_surf = clamp((dot(dir, -moon_dir) - (1.0 - angle)) * 4 / angle, 0, 1) * MOON_SURF_COLOR;
}
#if (CLOUD_MODE == CLOUD_MODE_NONE)
if (true) {
#else
if (fake_clouds || medium.x == MEDIUM_WATER) {
#endif
moon_halo_power = 50.0;
moon_halo_color *= 0.2;
moon_surf *= 0.05;
}
vec3 moon_halo = moon_halo_color * pow(max(dot(dir, -moon_dir), 0), moon_halo_power);
vec3 moon_light = moon_halo + moon_surf;
// Replaced all clamp(sun_dir, 0, 1) with max(sun_dir, 0) because sun_dir is calculated from sin and cos, which are never > 1
vec3 sky_color;
#if (CLOUD_MODE == CLOUD_MODE_NONE)
if (true) {
#else
if (fake_clouds || medium.x == MEDIUM_WATER) {
#endif
sky_color = get_sky_light(dir, !fake_clouds);
} else {
if (medium.x == MEDIUM_WATER) {
sky_color = get_sky_light(dir, true);
} else {
vec3 star_dir = normalize(sun_dir.xyz * dir.z + cross(sun_dir.xyz, vec3(0, 1, 0)) * dir.x + vec3(0, 1, 0) * dir.y);
float star = is_star_at(star_dir);
sky_color = vec3(0) + star;
}
}
return sky_color + sun_light + moon_light;
}
vec3 get_sky_color(vec3 dir, vec3 origin, vec3 f_pos, float quality, bool with_features, float refractionIndex) {
return get_sky_color(dir, origin, f_pos, quality, with_features, refractionIndex, false, 1.0);
}
vec3 get_sky_color(vec3 dir, vec3 origin, vec3 f_pos, float quality, bool with_stars) {
return get_sky_color(dir, origin, f_pos, quality, with_stars, 1.0, false, 1.0);
}
float fog(vec3 f_pos, vec3 focus_pos, uint medium) {
return max(1.0 - 5000.0 / (1.0 + distance(f_pos.xy, focus_pos.xy)), 0.0);
// float fog_radius = view_distance.x;
// float mist_radius = 10000000.0;
// float min_fog = 0.5;
// float max_fog = 1.0;
// if (medium == MEDIUM_WATER) {
// mist_radius = UNDERWATER_MIST_DIST;
// min_fog = 0.0;
// }
// float fog = distance(f_pos.xy, focus_pos.xy) / fog_radius;
// float mist = distance(f_pos, focus_pos) / mist_radius;
// return pow(clamp((max(fog, mist) - min_fog) / (max_fog - min_fog), 0.0, 1.0), 1.7);
}
/* vec3 illuminate(vec3 color, vec3 light, vec3 diffuse, vec3 ambience) {
float avg_col = (color.r + color.g + color.b) / 3.0;
return ((color - avg_col) * light + (diffuse + ambience) * avg_col) * (diffuse + ambience);
} */
vec3 illuminate(float max_light, vec3 view_dir, /*vec3 max_light, */vec3 emitted, vec3 reflected) {
return emitted + reflected;
// const float NIGHT_EXPOSURE = 10.0;
// const float DUSK_EXPOSURE = 2.0;//0.8;
// const float DAY_EXPOSURE = 1.0;//0.7;
// #if (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_ASHIKHMIN)
// const float DAY_SATURATION = 1.1;
// #else
// const float DAY_SATURATION = 1.0;
// #endif
// const float DUSK_SATURATION = 0.6;
// const float NIGHT_SATURATION = 0.1;
// const float gamma = /*0.5*//*1.*0*/1.0;//1.0;
/* float light = length(emitted + reflected);
float color = srgb_to_linear(emitted + reflected);
float avg_col = (color.r + color.g + color.b) / 3.0;
return ((color - avg_col) * light + reflected * avg_col) * (emitted + reflected); */
// float max_intensity = vec3(1.0);
// vec3 color = emitted + reflected;
// float lum = rel_luminance(color);
// float lum_sky = lum - max_light;
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x); */
// float sky_light = rel_luminance(
// get_sun_color(/*sun_dir*/) * get_sun_brightness(/*sun_dir*/) * SUN_COLOR_FACTOR +
// get_moon_color(/*moon_dir*/) * get_moon_brightness(/*moon_dir*/));
// Tone mapped value.
// vec3 T = /*color*//*lum*/color;//normalize(color) * lum / (1.0 + lum);
// float alpha = 0.5;//2.0;
// float alpha = mix(
// mix(
// DUSK_EXPOSURE,
// NIGHT_EXPOSURE,
// max(sun_dir.z, 0)
// ),
// DAY_EXPOSURE,
// max(-sun_dir.z, 0)
// );
// vec3 now_light = moon_dir.z < 0 ? moon_dir.xyz : sun_dir.xyz;
// float cos_view_light = dot(-now_light, view_dir);
// alpha *= exp(1.0 - cos_view_light);
// sky_light *= 1.0 - log(1.0 + view_dir.z);
// float alph = sky_light > 0.0 && max_light > 0.0 ? mix(1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light / (0.0 + sky_light)), 1.0, clamp(max_light - sky_light, 0.0, 1.0)) : 1.0;
// alpha = alpha * min(alph, 1.0);//((max_light > 0.0 && max_light > sky_light /* && sky_light > 0.0*/) ? /*1.0*/1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light - (0.0 + sky_light)) : 1.0);
// alpha = alpha * min(1.0, (max_light == 0.0 ? 1.0 : (1.0 + abs(lum_sky)) / /*(1.0 + max_light)*/max_light));
// vec3 col_adjusted = lum == 0.0 ? vec3(0.0) : color / lum;
// float L = lum == 0.0 ? 0.0 : log(lum);
// // float B = T;
// // float B = L + log(alpha);
// float B = lum;
// float D = L - B;
// float o = 0.0;//log(PERSISTENT_AMBIANCE);
// float scale = /*-alpha*/-alpha;//1.0;
// float B_ = (B - o) * scale;
// // float T = lum;
// float O = exp(B_ + D);
// float T = 1.0 - exp(-alpha * lum);//lum / (1.0 + lum);
// float T = lum;
// Heuristic desaturation
// const float s = 0.8;
// float s = mix(
// mix(
// DUSK_SATURATION,
// NIGHT_SATURATION,
// max(sun_dir.z, 0)
// ),
// DAY_SATURATION,
// max(-sun_dir.z, 0)
// );
// s = max(s, (max_light) / (1.0 + s));
// s = max(s, max_light / (1.0 + max_light));
// vec3 c = pow(col_adjusted, vec3(s)) * T;
// vec3 c = col_adjusted * T;
// vec3 c = sqrt(col_adjusted) * T;
// vec3 c = /*col_adjusted * */col_adjusted * T;
// return color;
// return c;
// float sum_col = color.r + color.g + color.b;
// return /*srgb_to_linear*/(/*0.5*//*0.125 * */vec3(pow(color.x, gamma), pow(color.y, gamma), pow(color.z, gamma)));
}
vec3 simple_lighting(vec3 pos, vec3 col, float shade) {
// Bad fake lantern so we can see in caves
vec3 d = pos.xyz - focus_pos.xyz;
return col * clamp(2.5 / dot(d, d), shade * (get_sun_brightness() + 0.01), 1);
}
float wind_wave(float off, float scaling, float speed, float strength) {
float aspeed = abs(speed);
// TODO: Right now, the wind model is pretty simplistic. This means that there is frequently no wind at all, which
// looks bad. For now, we add a lower bound on the wind speed to keep things looking nice.
strength = max(strength, 6.0);
aspeed = max(aspeed, 5.0);
return (sin(tick_loop(2.0 * PI, 0.35 * scaling * floor(aspeed), off)) * (1.0 - fract(aspeed))
+ sin(tick_loop(2.0 * PI, 0.35 * scaling * ceil(aspeed), off)) * fract(aspeed)) * abs(strength) * 0.25;
//return sin(tick.x * 1.5 * scaling + off) + sin(tick.x * 0.35 * scaling + off);
}
#endif