#version 440 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif // #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_VOXEL #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_LOD_FULL_INFO #include #include #include layout(location = 0) in vec3 f_pos; layout(location = 1) in vec3 f_norm; layout(location = 2) in float pull_down; // in vec2 v_pos_orig; // in vec4 f_shadow; // in vec4 f_square; layout(location = 0) out vec4 tgt_color; layout(location = 1) out uvec4 tgt_mat; /// const vec4 sun_pos = vec4(0); // const vec4 light_pos[2] = vec4[](vec4(0), vec4(0)/*, vec3(00), vec3(0), vec3(0), vec3(0)*/); #include void main() { // tgt_color = vec4(vec3(1.0), 1.0); // return; // vec3 f_pos = lod_pos(f_pos.xy); // vec3 f_col = lod_col(f_pos.xy); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(simple_lighting(f_pos.xyz, lod_col(f_pos.xy), 1.0), 1); return; #endif float my_alt = /*f_pos.z;*/alt_at_real(f_pos.xy); // vec3 f_pos = vec3(f_pos.xy, max(my_alt, f_pos.z)); /* gl_Position = proj_mat * view_mat * vec4(f_pos, 1); gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); */ vec3 my_pos = vec3(f_pos.xy, my_alt); //vec3 my_norm = lod_norm(f_pos.xy/*, f_square*/); //float which_norm = dot(my_norm, normalize(cam_pos.xyz - my_pos)); // which_norm = 0.5 + which_norm * 0.5; // which_norm = pow(max(0.0, which_norm), /*0.03125*/1 / 8.0);// * 0.5; // smoothstep //which_norm = which_norm * which_norm * (3 - 2 * abs(which_norm)); // which_norm = mix(0.0, 1.0, which_norm > 0.0); // vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); vec3 f_norm = lod_norm(f_pos.xy);//mix(faceforward(f_norm, cam_pos.xyz - f_pos, -f_norm), my_norm, which_norm); vec3 f_pos = mix(f_pos, my_pos, f_norm); // vec3 fract_pos = fract(f_pos); /* if (length(f_pos - cam_pos.xyz) <= view_distance.x + 32.0) { vec4 new_f_pos; float depth = 10000000.0; vec4 old_coord = all_mat * vec4(f_pos.xyz, 1.0); for (int i = 0; i < 6; i ++) { // vec4 square = focus_pos.xy + vec4(splay(pos - vec2(1.0, 1.0), splay(pos + vec2(1.0, 1.0)))); vec3 my_f_norm = normals[i]; vec3 my_f_tan = normals[(i + 2) % 6]; vec3 my_f_bitan = normals[(i + 4) % 6]; mat4 foo = mat4(vec4(my_f_tan, 0), vec4(my_f_bitan, 0), vec4(my_f_norm, 0), vec4(0, 0, 0, 1)); mat4 invfoo = foo * inverse(foo * all_mat); vec4 my_f_pos = invfoo * (old_coord);//vec4(f_pos, 1.0); vec4 my_f_proj = all_mat * my_f_pos; if (my_f_proj.z <= depth) { new_f_pos = my_f_pos; f_norm = my_f_norm; depth = my_f_proj.z; } } // f_pos = new_f_pos.xyz; } */ // Test for distance to all 6 sides of the enclosing cube. // if (/*any(lessThan(fract(f_pos.xy), 0.01))*/fract_pos.x <= 0.1) { // f_norm = faceforward(vec3(-1, 0, 0), f_norm, vec3(1, 0, 0)); // f_tan = vec3(0, 1, 0); // } else if (fract_pos.y <= 0.1) { // f_norm = faceforward(vec3(0, -1, 0), f_norm, vec3(0, 1, 0)); // f_tan = vec3(0, 0, 1); // } else { // f_norm = faceforward(vec3(0, 0, -1), f_norm, vec3(0, 0, 1)); // f_tan = vec3(1, 0, 0); // } // vec3 f_bitan = cross(f_norm, f_tan); // mat4 foo = mat4(vec4(f_tan, 0), vec4(f_bitan, 0), vec4(f_norm, 0), vec4(0, 0, 0, 1)); // mat4 invfoo = foo * inverse(foo * all_mat); // vec3 old_coord = all_mat * vec4(f_pos.xyz, 1.0); // vec4 new_f_pos = invfoo * (old_coord);//vec4(f_pos, 1.0); vec3 f_col_raw = mix(lod_col(f_pos.xy), vec3(0), clamp(pull_down / 30, 0, 1)); // tgt_color = vec4(f_col, 1.0); vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); vec3 view_dir = -cam_to_frag; float f_ao = 1.0; vec3 voxel_norm = f_norm; const float VOXELIZE_DIST = 2000; float voxelize_factor = clamp(1.0 - (distance(cam_pos.xy, f_pos.xy) - view_distance.x) * (1.0 / VOXELIZE_DIST), 0, 1); vec3 cam_dir = cam_to_frag; #ifdef EXPERIMENTAL_NOLODVOXELS //vec3 side_norm = normalize(vec3(my_norm.xy, 0.01)); //vec3 top_norm = vec3(0, 0, 1); voxel_norm = f_norm;//normalize(mix(side_norm, top_norm, max(cam_dir.z, 0.0))); #else #ifdef EXPERIMENTAL_PROCEDURALLODDETAIL float nz_offset = floor((noise_2d((floor(f_pos.xy) + focus_off.xy) * 0.01) - 0.5) * 3.0 / max(f_norm.z, 0.01)); #else const float nz_offset = 0.0; #endif float t = -2.0 + nz_offset; while (t < 2.0 + nz_offset) { vec3 deltas = (step(vec3(0), -cam_dir) - fract(f_pos - cam_dir * t)) / -cam_dir; float m = min(min(deltas.x, deltas.y), deltas.z); t += max(m, 0.01); vec3 block_pos = floor(f_pos - cam_dir * t) + 0.5; if (dot(block_pos - f_pos - nz_offset * f_norm, -f_norm) < 0.0) { vec3 to_center = abs(block_pos - (f_pos - cam_dir * t)); voxel_norm = step(max(max(to_center.x, to_center.y), to_center.z), to_center) * sign(-cam_dir); voxel_norm = mix(f_norm, voxel_norm, voxelize_factor); f_ao = mix(1.0, clamp(1.0 + (t - nz_offset) * 0.5, 0.1, 1.0), voxelize_factor * max(0.0, -dot(cam_dir, f_norm))); break; } } #endif /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ // voxel_norm = vec3(0.0); #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM) float shadow_alt = /*f_pos.z;*/alt_at(f_pos.xy);//max(alt_at(f_pos.xy), f_pos.z); // float shadow_alt = f_pos.z; #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW) float shadow_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureMaybeBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); // float sun_shade_frac = 1.0; #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;//horizon_at2(f_shadow, shadow_alt, f_pos, moon_dir); // Magic stop-gap code without any physical justification. //vec3 lerpy_norm; //if (my_norm.z/*f_norm.z*/ > 0.99999) { // lerpy_norm = vec3(0, 0, 1); //} else { // vec3 side_norm = normalize(vec3(my_norm.xy, 0)); // // lerpy_norm = f_norm; // float mix_factor = clamp(abs(dot(f_orig_view_dir, side_norm)), 0, 1); // lerpy_norm = mix( // mix(my_norm, side_norm, clamp(dot(side_norm, my_norm) + 0.5, 0, 1)), // my_norm, // mix_factor // ); //} //const float DIST = 0.07; /* voxel_norm = normalize(mix(voxel_norm, lerpy_norm, clamp(my_norm.z * my_norm.z - (1.0 - DIST), 0, 1) / DIST)); */ //f_pos.xyz += abs(voxel_norm) * delta_sides; /* voxel_norm = mix(my_norm, voxel_norm == vec3(0.0) ? f_norm : voxel_norm, voxelize_factor); */ //vec3 hash_pos = f_pos + focus_off.xyz; //const float A = 0.055; //const float W_INV = 1 / (1 + A); //const float W_2 = W_INV * W_INV;//pow(W_INV, 2.4); //const float NOISE_FACTOR = 0.02;//pow(0.02, 1.2); //float noise = hash(vec4(floor(hash_pos * 3.0 - voxel_norm * 0.5), 0));//0.005/* - 0.01*/; //vec3 noise_delta = (sqrt(f_col_raw) * W_INV + noise * NOISE_FACTOR); // noise_delta = noise_delta * noise_delta * W_2 - f_col; // lum = W ⋅ col // lum + noise = W ⋅ (col + delta) // W ⋅ col + noise = W ⋅ col + W ⋅ delta // noise = W ⋅ delta // delta = noise / W // vec3 col = (f_col + noise_delta); // vec3 col = noise_delta * noise_delta * W_2; vec3 f_col = f_col_raw;//noise_delta * noise_delta * W_2; // f_col = /*srgb_to_linear*/(f_col + hash(vec4(floor(hash_pos * 3.0 - voxel_norm * 0.5), 0)) * 0.01/* - 0.01*/); // Small-scale noise // f_ao = 1.0; // f_ao = dot(f_ao_vec, sqrt(1.0 - delta_sides * delta_sides)); //f_ao *= dot(f_ao_vec, abs(voxel_norm)); // f_ao = sqrt(dot(f_ao_vec * abs(voxel_norm), sqrt(1.0 - delta_sides * delta_sides)) / 3.0); // vec3 ao_pos2 = min(fract(f_pos), 1.0 - fract(f_pos)); // f_ao = sqrt(dot(ao_pos2, ao_pos2)); // // f_ao = dot(abs(voxel_norm), f_ao_vec); // // voxel_norm = f_norm; // Note: because voxels, we reduce the normal for reflections to just its z component, dpendng on distance to camera. // Idea: the closer we are to facing top-down, the more the norm should tend towards up-z. // vec3 l_norm; // = vec3(0.0, 0.0, 1.0); // vec3 l_norm = normalize(vec3(f_norm.x / max(abs(f_norm.x), 0.001), f_norm.y / max(abs(f_norm.y), 0.001), f_norm.z / max(abs(f_norm.z), 0.001))); // vec3 l_factor = 1.0 / (1.0 + max(abs(/*f_pos - cam_pos.xyz*//*-vec3(vert_pos4) / vert_pos4.w*/vec3(f_pos.xy, 0.0) - vec3(/*cam_pos*/focus_pos.xy, cam_to_frag)) - vec3(view_distance.x, view_distance.x, 0.0), 0.0) / vec3(32.0 * 2.0, 32.0 * 2.0, 1.0)); // l_factor.z = // vec4 focus_pos4 = view_mat * vec4(focus_pos.xyz, 1.0); // vec3 focus_dir = normalize(-vec3(focus_pos4) / focus_pos4.w); // float l_factor = 1.0 - pow(clamp(0.5 + 0.5 * dot(/*-view_dir*/-cam_to_frag, l_norm), 0.0, 1.0), 2.0);//1.0 / (1.0 + 0.5 * pow(max(distance(/*focus_pos.xy*/vec3(focus_pos.xy, /*vert_pos4.z / vert_pos4.w*/f_pos.z), vec3(f_pos.xy, f_pos.z))/* - view_distance.x*/ - 32.0, 0.0) / (32.0 * 1.0), /*0.5*/1.0)); // l_factor = 1.0; // l_norm = normalize(mix(l_norm, f_norm, l_factor)); // l_norm = f_norm; /* l_norm = normalize(vec3( mix(l_norm.x, f_norm.x, clamp(pow(f_norm.x * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.y * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.z * 0.5, 64), 0, 1)) )); */ // f_norm = mix(l_norm, f_norm, min(1.0 / max(cam_to_frag, 0.001), 1.0)); /* vec3 l_norm = normalize(vec3( mix(-1.0, 1.0, clamp(pow(f_norm.x * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.y * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.z * 0.5, 64), 0, 1)) )); */ // vec3 view_dir = normalize(f_pos - cam_pos.xyz); // vec3 sun_dir = get_sun_dir(time_of_day.x); // vec3 moon_dir = get_moon_dir(time_of_day.x); // // float sun_light = get_sun_brightness(sun_dir); // // float moon_light = get_moon_brightness(moon_dir); // // float my_alt = f_pos.z;//alt_at_real(f_pos.xy); // // vec3 f_norm = my_norm; // // vec4 f_shadow = textureMaybeBicubic(t_horizon, pos_to_tex(f_pos.xy)); // // float shadow_alt = /*f_pos.z;*/alt_at(f_pos.xy);//max(alt_at(f_pos.xy), f_pos.z); // // float my_alt = alt_at(f_pos.xy); // float sun_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); // float moon_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, moon_dir); // // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); // // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); // // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). // // float shade_frac = sun_shade_frac + moon_shade_frac; // // float brightness_denominator = (ambient_sides + vec3(SUN_AMBIANCE * sun_light + moon_light); // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/); float alpha = 1.0;//0.1;//0.2;///1.0;//sqrt(2.0); const float n2 = 1.5; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float cam_alt = alt_at(cam_pos.xy); float fluid_alt = medium.x == MEDIUM_WATER ? max(cam_alt + 1, floor(shadow_alt)) : view_distance.w; float R_s = (f_pos.z < my_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 emitted_light, reflected_light; vec3 mu = medium.x == MEDIUM_WATER ? MU_WATER : vec3(0.0); // NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water. vec3 cam_attenuation = compute_attenuation_point(f_pos, view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz); // Use f_norm here for better shadows. // vec3 light_frac = light_reflection_factor(f_norm/*l_norm*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(/*1.0*/R_s), alpha); // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, (0.25 * shade_frac + 0.25 * light_frac) * f_col, 0.5 * shade_frac * f_col, 0.5 * shade_frac * /*vec3(1.0)*/f_col, 2.0, emitted_light, reflected_light); float max_light = 0.0; vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); max_light += get_sun_diffuse2(sun_info, moon_info, voxel_norm/*l_norm*/, view_dir, f_pos, vec3(0.0), cam_attenuation, fluid_alt, k_a/* * (0.5 * light_frac + vec3(0.5 * shade_frac))*/, k_d, /*0.5 * shade_frac * *//*vec3(1.0)*//*f_col*/vec3(R_s), alpha, voxel_norm, 0.0/*max(distance(focus_pos.xy, f_pos.xyz) - view_distance.x, 0.0) / 1000 < 1.0*/, emitted_light, reflected_light); // emitted_light = vec3(1.0); // emitted_light *= max(shade_frac, MIN_SHADOW); // reflected_light *= shade_frac; // max_light *= shade_frac; // reflected_light = vec3(0.0); // dot(diffuse_factor, /*R_r * */vec4(abs(norm) * (1.0 - dist), dist)) // corner_xy = mix(all(lessThan(corner_xy, 1.0)) ? vec2(0.0) : 0.4 * (), 1.0 // // TODO: Handle similar logic for z. // So we repeat this for all three sides to find the "next" position on each side. // vec3 delta_sides = 1.0 + sides * fract(-sides * f_pos); // Now, we // Now, all we have to do is find out whether (again, assuming f_pos is positive) next_sides represents a new integer. // We currently just treat this as "new floor != old floor". // So to find the position at the nearest voxel, we just subtract voxel_norm * fract(sides * ) from f_pos.z. // Then to find out whether we meet a new "block" in 1 voxel, we just // on the "other" side can be found (according to my temporary theory) as the cross product // vec3 norm = normalize(cross( // vec3(/*2.0 * SAMPLE_W*/square.z - square.x, 0.0, altx1 - altx0), // vec3(0.0, /*2.0 * SAMPLE_W*/square.w - square.y, alty1 - alty0) // )); // vec3 norm = normalize(vec3( // (altx0 - altx1) / (square.z - square.x), // (alty0 - alty1) / (square.w - square.y), // 1.0 // //(abs(square.w - square.y) + abs(square.z - square.x)) / (slope + 0.00001) // Avoid NaN // )); // // If a side coordinate is 0, then it counts as no AO; // otherwise, it counts as fractional AO. So what we need is to know whether the fractional AO to the next block in that direction pushes us to a new integer. // // vec3 ao_pos_z = floor(f_pos + f_norm); // vec3 ao_pos_z = corner_distance; // vec3 ao_pos = 0.5 - clamp(min(fract(abs(f_pos)), 1.0 - fract(abs(f_pos))), 0.0, 0.5); // // f_ao = /*sqrt*/1.0 - 2.0 * sqrt(dot(ao_pos, ao_pos) / 2.0); // f_ao = /*sqrt*/1.0 - (dot(ao_pos, ao_pos)/* / 2.0*/); // f_ao = /*sqrt*/1.0 - 2.0 * (dot(ao_pos, ao_pos)/* / 2.0*/); // f_ao = /*sqrt*/1.0 - 2.0 * sqrt(dot(ao_pos, ao_pos) / 2.0); float ao = f_ao;// /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1; emitted_light *= ao; reflected_light *= ao; // emitted_light += 0.5 * vec3(SUN_AMBIANCE * sun_shade_frac * sun_light + moon_shade_frac * moon_light) * f_col * (ambient_sides + 1.0); // Ambient lighting attempt: vertical light. // reflected_light += /*0.0125*/0.15 * 0.25 * _col * light_reflection_factor(f_norm, cam_to_frag, vec3(0, 0, -1.0), 0.5 * f_col, 0.5 * f_col, 2.0); // emitted_light += /*0.0125*/0.25 * f_col * ; // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // vec3 surf_color = illuminate(f_col, light, diffuse_light, ambient_light); // f_col = f_col + (hash(vec4(floor(vec3(focus_pos.xy + splay(v_pos_orig), f_pos.z)) * 3.0 - round(f_norm) * 0.5, 0)) - 0.5) * 0.05; // Small-scale noise vec3 surf_color; float surf_alpha = 1.0; uint mat; // NOTE: On nvidea vulkan drivers a `pow` with negative base results in NaN even if the // exponent is an integer. vec3 water_col_diff = f_col_raw - vec3(0.02, 0.06, 0.22); if (dot(water_col_diff * water_col_diff, vec3(1)) < 0.01 && dot(vec3(0, 0, 1), f_norm) > 0.9) { mat = MAT_FLUID; vec3 reflect_ray = cam_to_frag * vec3(1, 1, -1); #if (FLUID_MODE >= FLUID_MODE_MEDIUM) vec3 water_color = (1.0 - MU_WATER) * MU_SCATTER; float passthrough = dot(faceforward(f_norm, f_norm, cam_to_frag), -cam_to_frag); vec3 reflect_color; #if (FLUID_MODE == FLUID_MODE_HIGH) reflect_color = get_sky_color(reflect_ray, f_pos, vec3(-100000), 0.125, false, 1.0, true, sun_shade_frac); reflect_color = get_cloud_color(reflect_color, reflect_ray, cam_pos.xyz, 100000.0, 0.1); #else reflect_color = get_sky_color(reflect_ray, f_pos, vec3(-100000), 0.125, false, 1.0, true, sun_shade_frac); #endif reflect_color *= sun_shade_frac * 0.75 + 0.25; const float REFLECTANCE = 1.0; surf_color = illuminate(max_light, view_dir, f_col * emitted_light, reflect_color * REFLECTANCE + water_color * reflected_light); const vec3 underwater_col = vec3(0.0); float min_refl = min(emitted_light.r, min(emitted_light.g, emitted_light.b)); surf_color = mix(underwater_col, surf_color, (1.0 - passthrough) * 1.0 / (1.0 + min_refl)); surf_alpha = 1.0 - passthrough; #else surf_alpha = 0.9; surf_color = get_sky_color(reflect_ray, f_pos, vec3(-100000), 0.125, true, 1.0, true, sun_shade_frac); #endif } else { mat = MAT_LOD; surf_color = illuminate(max_light, view_dir, f_col * emitted_light, f_col * reflected_light); } tgt_color = vec4(surf_color, surf_alpha); tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), mat); }