#version 440 core #include #define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION) #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN // Must come before includes #define IS_POSTPROCESS #include // Note: The sampler uniform is declared here because it differs for MSAA #include #include #include #include // This *MUST* come after `cloud.glsl`: it contains a function that depends on `cloud.glsl` when clouds are enabled #include #include layout(set = 2, binding = 0) uniform texture2D t_src_color; layout(set = 2, binding = 1) uniform sampler s_src_color; layout(set = 2, binding = 2) uniform texture2D t_src_depth; layout(set = 2, binding = 3) uniform sampler s_src_depth; layout (std140, set = 2, binding = 4) uniform u_locals { mat4 all_mat_inv; }; layout(location = 0) in vec2 uv; layout(set = 2, binding = 5) uniform utexture2D t_src_mat; layout(location = 0) out vec4 tgt_color; vec3 wpos_at(vec2 uv) { uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0); float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x; //float buf_depth = texture(sampler2D(t_src_depth, s_src_depth), uv).x; vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0); vec4 view_space = all_mat_inv * clip_space; view_space /= view_space.w; return view_space.xyz; } float depth_at(vec2 uv) { uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0); float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x; if (buf_depth == 0.0) { return 524288.0; } else { vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0); vec4 view_space = all_mat_inv * clip_space; view_space /= view_space.w; return -(view_mat * view_space).z; } } void main() { vec4 color = texture(sampler2D(t_src_color, s_src_color), uv); uvec2 mat_sz = textureSize(usampler2D(t_src_mat, s_src_depth), 0); uvec4 mat = texelFetch(usampler2D(t_src_mat, s_src_depth), clamp(ivec2(uv * mat_sz), ivec2(0), ivec2(mat_sz) - 1), 0); #ifdef EXPERIMENTAL_VIEWNORMALS tgt_color = vec4(vec3(mat.xyz) / 255.0, 1); return; #endif #ifdef EXPERIMENTAL_VIEWMATERIALS const vec3 mat_colors[5] = vec3[]( vec3(0, 1, 1), // MAT_SKY vec3(1, 1, 0), // MAT_BLOCK vec3(0, 0, 1), // MAT_FLUID vec3(1, 0, 1), // MAT_FIGURE vec3(0.5, 1, 0) // MAT_LOD ); tgt_color = vec4(mat_colors[mat.a % 5u], 1); return; #endif #ifdef EXPERIMENTAL_VIEWDEPTH tgt_color = vec4(vec3(pow(clamp(depth_at(uv) / 524288.0, 0, 1), 0.3)), 1); return; #endif #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(color.rgb, 1); return; #endif vec3 wpos = wpos_at(uv); float dist = distance(wpos, cam_pos.xyz); vec3 cam_dir = (wpos - cam_pos.xyz) / dist; vec3 dir = cam_dir; // Apply clouds float cloud_blend = 1.0; if (color.a < 1.0) { vec2 nz = vec2(0); uvec2 col_sz = textureSize(sampler2D(t_src_color, s_src_color), 0); #if (REFLECTION_MODE >= REFLECTION_MODE_MEDIUM) nz = (vec2( noise_3d(vec3((wpos.xy + focus_off.xy) * 0.1, tick.x * 0.2 + wpos.x * 0.01)).x, noise_3d(vec3((wpos.yx + focus_off.yx) * 0.1, tick.x * 0.2 + wpos.y * 0.01)).x ) - 0.5) * (dir.z < 0.0 ? color.a : 1.0); const float n2 = 1.3325; vec3 refr_dir; // TODO: Proper refraction // if (medium.x == MEDIUM_WATER) { // vec3 surf_norm = normalize(vec3(nz * 0.03 / (1.0 + dist * 0.1), 1)); // refr_dir = refract(dir, surf_norm * -sign(dir.z), 1.0 / n2); // } else { if (mat.a == MAT_FLUID) { refr_dir = normalize(dir + vec3(nz * 1.5 / dist, 0.0)); } else { refr_dir = dir; } // } vec4 clip = (all_mat * vec4(cam_pos.xyz + refr_dir, 1.0)); vec2 new_uv = (clip.xy / max(clip.w, 0)) * 0.5 * vec2(1, -1) + 0.5; float uv_merge = clamp((1.0 - abs(new_uv.y - 0.5) * 2) * 5.0, 0, 1); new_uv = mix(uv, new_uv, uv_merge); vec4 new_col = texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(new_uv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0); if (new_col.a < 1.0) { color = new_col; dir = refr_dir; } #endif { cloud_blend = 1.0 - color.a; #if (FLUID_MODE >= FLUID_MODE_MEDIUM || REFLECTION_MODE >= REFLECTION_MODE_MEDIUM) if (mat.a != MAT_SKY) { vec3 surf_norm = vec3(mat.xyz) / 127.0 - 1.0; vec3 refl_dir = reflect(dir, surf_norm); // Don't reflect back into the surface by snapping the reflection to the *actual* (i.e: not normal-mapped) surface plane // TODO: Find a good way to know the *actual* surface normal, minus normal mapping vec3 flat_norm = vec3(0, 0, 1);//round(surf_norm); if (dot(refl_dir, flat_norm) <= 0.0) { // TODO: This assumes that the surface is axis-aligned! refl_dir = normalize(refl_dir.xyz * (1.0 - abs(flat_norm))); } vec4 clip = (all_mat * vec4(cam_pos.xyz + refl_dir, 1.0)); vec2 new_uv = (clip.xy / max(clip.w, 0)) * 0.5 * vec2(1, -1) + 0.5; #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) vec3 ray_end = wpos + refl_dir * 5.0 * dist; // Trace through the screen-space depth buffer to find the ray intersection const int MAIN_ITERS = 64; for (int i = 0; i < MAIN_ITERS; i ++) { float t = float(i) / float(MAIN_ITERS); // TODO: Trace in screen space, not world space vec3 swpos = mix(wpos, ray_end, t); vec3 svpos = (view_mat * vec4(swpos, 1)).xyz; vec4 clippos = proj_mat * vec4(svpos, 1); vec2 suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5; float d = -depth_at(suv); if (d < svpos.z * 0.8 && d > svpos.z * 0.999) { // Don't cast into water! if (texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(suv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0).a >= 1.0) { /* t -= 1.0 / float(MAIN_ITERS); */ // Do a bit of extra iteration to try to refine the estimate const int ITERS = 8; float diff = 1.0 / float(MAIN_ITERS); for (int i = 0; i < ITERS; i ++) { vec3 swpos = mix(wpos, ray_end, t); svpos = (view_mat * vec4(swpos, 1)).xyz; vec4 clippos = proj_mat * vec4(svpos, 1); suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5; float d = -depth_at(suv); t += ((d > svpos.z * 0.999) ? -1.0 : 1.0) * diff; diff *= 0.5; } // Small offset to push us into obscured territory new_uv = suv - vec2(0, 0.001); break; } } } #endif #ifdef EXPERIMENTAL_SMEARREFLECTIONS const float SMEAR_FRAC = 0.2; vec2 anew_uv = abs(new_uv - 0.5) * 2; new_uv = mix( anew_uv, 1.0 - SMEAR_FRAC + (1.0 - 1.0 / (1.0 + (anew_uv - 1.0 + SMEAR_FRAC))) * SMEAR_FRAC, lessThan(vec2(1.0 - SMEAR_FRAC), anew_uv) ) * sign(new_uv - 0.5) * 0.5 + 0.5; #else new_uv = clamp(new_uv, vec2(0), vec2(1)); #endif vec3 new_wpos = wpos_at(new_uv); float new_dist = distance(new_wpos, cam_pos.xyz); float merge = min( // Off-screen merge factor #ifdef EXPERIMENTAL_SMEARREFLECTIONS 1.0, #else clamp((1.0 - max(abs(new_uv.y - 0.5), abs(new_uv.x - 0.5)) * 2) * 6.0, 0, 1), #endif // Depth merge factor clamp((new_dist - dist * 0.5) / (dist * 0.5), 0.0, 1.0) ); vec3 refl_col; float not_underground = 1.0; // Make underground water look more correct #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) float f_alt = alt_at(wpos.xy); not_underground = clamp((wpos.z - f_alt) / 32.0 + 1.0, 0.0, 1.0); #endif // Did we hit a surface during reflection? if (merge > 0.0) { // Yes: grab the new material from screen space uvec4 new_mat = texelFetch(usampler2D(t_src_mat, s_src_depth), clamp(ivec2(new_uv * mat_sz), ivec2(0), ivec2(mat_sz) - 1), 0); // If it's the sky, just go determine the sky color analytically to avoid sampling the incomplete skybox // Otherwise, pull the color from the screen-space color buffer vec3 sky_col = min(get_sky_color(refl_dir, wpos, vec3(-100000), 0.125, false, 0.0, true, 0.0), vec3(1)) * not_underground; if (new_mat.a == MAT_SKY) { refl_col = sky_col; } else { refl_col = mix(sky_col, texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(new_uv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0).rgb, merge); } // Apply clouds to reflected colour refl_col = mix(refl_col, get_cloud_color(refl_col, refl_dir, wpos, distance(new_wpos, wpos.xyz), 1.0), not_underground); } else { // No: assume that anything off-screen is the colour of the sky refl_col = min(get_sky_color(refl_dir, wpos, vec3(-100000), 0.125, true, 1.0, true, 1.0) * not_underground, vec3(1)); // Apply clouds to reflection refl_col = mix(refl_col, get_cloud_color(refl_col, refl_dir, wpos, 100000.0, 1.0), not_underground); } color.rgb = mix(color.rgb, refl_col, color.a); cloud_blend = 1; } else { #else { #endif cloud_blend = 1; } } } color.rgb = mix(color.rgb, get_cloud_color(color.rgb, dir, cam_pos.xyz, dist, 1.0), cloud_blend); #if (CLOUD_MODE == CLOUD_MODE_NONE) color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb); #else if (medium.x == MEDIUM_AIR && rain_density > 0.001) { vec3 cam_wpos = cam_pos.xyz + focus_off.xyz; vec3 adjusted_dir = (vec4(cam_dir, 0) * rain_dir_mat).xyz; vec2 dir2d = adjusted_dir.xy; vec3 rorigin = cam_pos.xyz + focus_off.xyz + 0.5; vec3 rpos = vec3(0.0); float t = 0.0; const float PLANCK = 0.01; for (int i = 0; i < 14 /* log2(64) * 2 + 2 */; i ++) { float scale = min(pow(2, ceil(t / 2.0)), 32); vec2 deltas = (step(vec2(0), dir2d) - fract(rpos.xy / scale + 100.0)) / dir2d; float jump = max(min(deltas.x, deltas.y) * scale, PLANCK); t += jump; #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) if (t >= 64.0) { break; } #else if (t >= 16.0) { break; } #endif rpos = rorigin + adjusted_dir * t; vec2 diff = abs(round(rpos.xy) - rpos.xy); vec3 wall_pos = vec3((diff.x > diff.y) ? rpos.xy : rpos.yx, rpos.z + integrated_rain_vel); wall_pos.xz *= vec2(4, 0.3); wall_pos.z += hash_two(uvec2(wall_pos.xy + vec2(0, 0.5))); float depth_adjust = fract(hash_two(uvec2(wall_pos.xz) + 500u)); float wpos_dist = t - jump * depth_adjust; vec3 wpos = cam_pos.xyz + dir * wpos_dist; if (wpos_dist > dist) { break; } vec2 wall_pos_half = fract(wall_pos.xz) - 0.5; if (dot(wall_pos_half, wall_pos_half) < 0.01 + pow(max(0.0, wpos_dist - (dist - 0.25)) / 0.25, 4.0) * 0.2) { float density = rain_density * rain_occlusion_at(wpos); if (fract(hash_two(uvec2(wall_pos.xz) + 1000u)) >= density) { continue; } float alpha = 0.5 * clamp((wpos_dist - 1.0) * 0.5, 0.0, 1.0); float light = dot(color.rgb, vec3(1)) + 0.05 + (get_sun_brightness() + get_moon_brightness()) * 0.2; color.rgb = mix(color.rgb, vec3(0.3, 0.35, 0.5) * light, alpha); } } } #endif tgt_color = vec4(color.rgb, 1); }