321 lines
14 KiB
GLSL
321 lines
14 KiB
GLSL
#version 440 core
|
|
|
|
#include <constants.glsl>
|
|
|
|
#define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION)
|
|
|
|
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR
|
|
|
|
#if (FLUID_MODE == FLUID_MODE_LOW)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
|
|
#elif (FLUID_MODE >= FLUID_MODE_MEDIUM)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
|
|
#endif
|
|
|
|
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
|
|
|
|
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
|
|
|
|
// Must come before includes
|
|
#define IS_POSTPROCESS
|
|
|
|
#include <globals.glsl>
|
|
// Note: The sampler uniform is declared here because it differs for MSAA
|
|
#include <anti-aliasing.glsl>
|
|
#include <srgb.glsl>
|
|
#include <cloud.glsl>
|
|
#include <light.glsl>
|
|
// This *MUST* come after `cloud.glsl`: it contains a function that depends on `cloud.glsl` when clouds are enabled
|
|
#include <point_glow.glsl>
|
|
#include <random.glsl>
|
|
|
|
layout(set = 2, binding = 0)
|
|
uniform texture2D t_src_color;
|
|
layout(set = 2, binding = 1)
|
|
uniform sampler s_src_color;
|
|
|
|
layout(set = 2, binding = 2)
|
|
uniform texture2D t_src_depth;
|
|
layout(set = 2, binding = 3)
|
|
uniform sampler s_src_depth;
|
|
|
|
layout (std140, set = 2, binding = 4)
|
|
uniform u_locals {
|
|
mat4 all_mat_inv;
|
|
};
|
|
|
|
layout(location = 0) in vec2 uv;
|
|
|
|
layout(set = 2, binding = 5)
|
|
uniform utexture2D t_src_mat;
|
|
|
|
layout(location = 0) out vec4 tgt_color;
|
|
|
|
vec3 wpos_at(vec2 uv) {
|
|
uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0);
|
|
float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x;
|
|
//float buf_depth = texture(sampler2D(t_src_depth, s_src_depth), uv).x;
|
|
vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0);
|
|
vec4 view_space = all_mat_inv * clip_space;
|
|
view_space /= view_space.w;
|
|
return view_space.xyz;
|
|
}
|
|
|
|
float depth_at(vec2 uv) {
|
|
uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0);
|
|
float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x;
|
|
if (buf_depth == 0.0) {
|
|
return 524288.0;
|
|
} else {
|
|
vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0);
|
|
vec4 view_space = all_mat_inv * clip_space;
|
|
view_space /= view_space.w;
|
|
return -(view_mat * view_space).z;
|
|
}
|
|
}
|
|
|
|
void main() {
|
|
vec4 color = texture(sampler2D(t_src_color, s_src_color), uv);
|
|
|
|
uvec2 mat_sz = textureSize(usampler2D(t_src_mat, s_src_depth), 0);
|
|
uvec4 mat = texelFetch(usampler2D(t_src_mat, s_src_depth), clamp(ivec2(uv * mat_sz), ivec2(0), ivec2(mat_sz) - 1), 0);
|
|
|
|
#ifdef EXPERIMENTAL_VIEWNORMALS
|
|
tgt_color = vec4(vec3(mat.xyz) / 255.0, 1);
|
|
return;
|
|
#endif
|
|
#ifdef EXPERIMENTAL_VIEWMATERIALS
|
|
const vec3 mat_colors[5] = vec3[](
|
|
vec3(0, 1, 1), // MAT_SKY
|
|
vec3(1, 1, 0), // MAT_BLOCK
|
|
vec3(0, 0, 1), // MAT_FLUID
|
|
vec3(1, 0, 1), // MAT_FIGURE
|
|
vec3(0.5, 1, 0) // MAT_LOD
|
|
);
|
|
tgt_color = vec4(mat_colors[mat.a % 5u], 1);
|
|
return;
|
|
#endif
|
|
#ifdef EXPERIMENTAL_VIEWDEPTH
|
|
tgt_color = vec4(vec3(pow(clamp(depth_at(uv) / 524288.0, 0, 1), 0.3)), 1);
|
|
return;
|
|
#endif
|
|
|
|
#ifdef EXPERIMENTAL_BAREMINIMUM
|
|
tgt_color = vec4(color.rgb, 1);
|
|
return;
|
|
#endif
|
|
|
|
vec3 wpos = wpos_at(uv);
|
|
float dist = distance(wpos, cam_pos.xyz);
|
|
vec3 cam_dir = (wpos - cam_pos.xyz) / dist;
|
|
vec3 dir = cam_dir;
|
|
|
|
// Apply clouds
|
|
float cloud_blend = 1.0;
|
|
if (color.a < 1.0) {
|
|
vec2 nz = vec2(0);
|
|
uvec2 col_sz = textureSize(sampler2D(t_src_color, s_src_color), 0);
|
|
#if (REFLECTION_MODE >= REFLECTION_MODE_MEDIUM)
|
|
nz = (vec2(
|
|
noise_3d(vec3((wpos.xy + focus_off.xy) * 0.1, tick.x * 0.2 + wpos.x * 0.01)).x,
|
|
noise_3d(vec3((wpos.yx + focus_off.yx) * 0.1, tick.x * 0.2 + wpos.y * 0.01)).x
|
|
) - 0.5) * (dir.z < 0.0 ? color.a : 1.0);
|
|
|
|
const float n2 = 1.3325;
|
|
vec3 refr_dir;
|
|
// TODO: Proper refraction
|
|
// if (medium.x == MEDIUM_WATER) {
|
|
// vec3 surf_norm = normalize(vec3(nz * 0.03 / (1.0 + dist * 0.1), 1));
|
|
// refr_dir = refract(dir, surf_norm * -sign(dir.z), 1.0 / n2);
|
|
// } else {
|
|
if (mat.a == MAT_FLUID) {
|
|
refr_dir = normalize(dir + vec3(nz * 1.5 / dist, 0.0));
|
|
} else {
|
|
refr_dir = dir;
|
|
}
|
|
// }
|
|
|
|
vec4 clip = (all_mat * vec4(cam_pos.xyz + refr_dir, 1.0));
|
|
vec2 new_uv = (clip.xy / max(clip.w, 0)) * 0.5 * vec2(1, -1) + 0.5;
|
|
|
|
float uv_merge = clamp((1.0 - abs(new_uv.y - 0.5) * 2) * 5.0, 0, 1);
|
|
new_uv = mix(uv, new_uv, uv_merge);
|
|
|
|
vec4 new_col = texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(new_uv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0);
|
|
if (new_col.a < 1.0) {
|
|
color = new_col;
|
|
dir = refr_dir;
|
|
}
|
|
#endif
|
|
{
|
|
cloud_blend = 1.0 - color.a;
|
|
|
|
#if (FLUID_MODE >= FLUID_MODE_MEDIUM || REFLECTION_MODE >= REFLECTION_MODE_MEDIUM)
|
|
if (mat.a != MAT_SKY) {
|
|
vec3 surf_norm = vec3(mat.xyz) / 127.0 - 1.0;
|
|
vec3 refl_dir = reflect(dir, surf_norm);
|
|
|
|
// Don't reflect back into the surface by snapping the reflection to the *actual* (i.e: not normal-mapped) surface plane
|
|
// TODO: Find a good way to know the *actual* surface normal, minus normal mapping
|
|
vec3 flat_norm = vec3(0, 0, 1);//round(surf_norm);
|
|
if (dot(refl_dir, flat_norm) <= 0.0) {
|
|
// TODO: This assumes that the surface is axis-aligned!
|
|
refl_dir = normalize(refl_dir.xyz * (1.0 - abs(flat_norm)));
|
|
}
|
|
|
|
vec4 clip = (all_mat * vec4(cam_pos.xyz + refl_dir, 1.0));
|
|
vec2 new_uv = (clip.xy / max(clip.w, 0)) * 0.5 * vec2(1, -1) + 0.5;
|
|
|
|
#if (REFLECTION_MODE >= REFLECTION_MODE_HIGH)
|
|
vec3 ray_end = wpos + refl_dir * 5.0 * dist;
|
|
// Trace through the screen-space depth buffer to find the ray intersection
|
|
const int MAIN_ITERS = 64;
|
|
for (int i = 0; i < MAIN_ITERS; i ++) {
|
|
float t = float(i) / float(MAIN_ITERS);
|
|
// TODO: Trace in screen space, not world space
|
|
vec3 swpos = mix(wpos, ray_end, t);
|
|
vec3 svpos = (view_mat * vec4(swpos, 1)).xyz;
|
|
vec4 clippos = proj_mat * vec4(svpos, 1);
|
|
vec2 suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5;
|
|
float d = -depth_at(suv);
|
|
if (d < svpos.z * 0.8 && d > svpos.z * 0.999) {
|
|
// Don't cast into water!
|
|
if (texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(suv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0).a >= 1.0) {
|
|
/* t -= 1.0 / float(MAIN_ITERS); */
|
|
// Do a bit of extra iteration to try to refine the estimate
|
|
const int ITERS = 8;
|
|
float diff = 1.0 / float(MAIN_ITERS);
|
|
for (int i = 0; i < ITERS; i ++) {
|
|
vec3 swpos = mix(wpos, ray_end, t);
|
|
svpos = (view_mat * vec4(swpos, 1)).xyz;
|
|
vec4 clippos = proj_mat * vec4(svpos, 1);
|
|
suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5;
|
|
float d = -depth_at(suv);
|
|
t += ((d > svpos.z * 0.999) ? -1.0 : 1.0) * diff;
|
|
diff *= 0.5;
|
|
}
|
|
// Small offset to push us into obscured territory
|
|
new_uv = suv - vec2(0, 0.001);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef EXPERIMENTAL_SMEARREFLECTIONS
|
|
const float SMEAR_FRAC = 0.2;
|
|
vec2 anew_uv = abs(new_uv - 0.5) * 2;
|
|
new_uv = mix(
|
|
anew_uv,
|
|
1.0 - SMEAR_FRAC + (1.0 - 1.0 / (1.0 + (anew_uv - 1.0 + SMEAR_FRAC))) * SMEAR_FRAC,
|
|
lessThan(vec2(1.0 - SMEAR_FRAC), anew_uv)
|
|
) * sign(new_uv - 0.5) * 0.5 + 0.5;
|
|
#else
|
|
new_uv = clamp(new_uv, vec2(0), vec2(1));
|
|
#endif
|
|
|
|
vec3 new_wpos = wpos_at(new_uv);
|
|
float new_dist = distance(new_wpos, cam_pos.xyz);
|
|
float merge = min(
|
|
// Off-screen merge factor
|
|
#ifdef EXPERIMENTAL_SMEARREFLECTIONS
|
|
1.0,
|
|
#else
|
|
clamp((1.0 - max(abs(new_uv.y - 0.5), abs(new_uv.x - 0.5)) * 2) * 6.0, 0, 1),
|
|
#endif
|
|
// Depth merge factor
|
|
clamp((new_dist - dist * 0.5) / (dist * 0.5), 0.0, 1.0)
|
|
);
|
|
|
|
vec3 refl_col;
|
|
float not_underground = 1.0;
|
|
// Make underground water look more correct
|
|
#if (REFLECTION_MODE >= REFLECTION_MODE_HIGH)
|
|
float f_alt = alt_at(wpos.xy);
|
|
not_underground = clamp((wpos.z - f_alt) / 32.0 + 1.0, 0.0, 1.0);
|
|
#endif
|
|
// Did we hit a surface during reflection?
|
|
if (merge > 0.0) {
|
|
// Yes: grab the new material from screen space
|
|
uvec4 new_mat = texelFetch(usampler2D(t_src_mat, s_src_depth), clamp(ivec2(new_uv * mat_sz), ivec2(0), ivec2(mat_sz) - 1), 0);
|
|
// If it's the sky, just go determine the sky color analytically to avoid sampling the incomplete skybox
|
|
// Otherwise, pull the color from the screen-space color buffer
|
|
vec3 sky_col = min(get_sky_color(refl_dir, wpos, vec3(-100000), 0.125, false, 0.0, true, 0.0), vec3(1)) * not_underground;
|
|
if (new_mat.a == MAT_SKY) {
|
|
refl_col = sky_col;
|
|
} else {
|
|
refl_col = mix(sky_col, texelFetch(sampler2D(t_src_color, s_src_color), clamp(ivec2(new_uv * col_sz), ivec2(0), ivec2(col_sz) - 1), 0).rgb, merge);
|
|
}
|
|
// Apply clouds to reflected colour
|
|
refl_col = mix(refl_col, get_cloud_color(refl_col, refl_dir, wpos, distance(new_wpos, wpos.xyz), 1.0), not_underground);
|
|
} else {
|
|
// No: assume that anything off-screen is the colour of the sky
|
|
refl_col = min(get_sky_color(refl_dir, wpos, vec3(-100000), 0.125, true, 1.0, true, 1.0) * not_underground, vec3(1));
|
|
// Apply clouds to reflection
|
|
refl_col = mix(refl_col, get_cloud_color(refl_col, refl_dir, wpos, 100000.0, 1.0), not_underground);
|
|
}
|
|
color.rgb = mix(color.rgb, refl_col, color.a);
|
|
cloud_blend = 1;
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
cloud_blend = 1;
|
|
}
|
|
}
|
|
}
|
|
color.rgb = mix(color.rgb, get_cloud_color(color.rgb, dir, cam_pos.xyz, dist, 1.0), cloud_blend);
|
|
|
|
#if (CLOUD_MODE == CLOUD_MODE_NONE)
|
|
color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb);
|
|
#else
|
|
if (medium.x == MEDIUM_AIR && rain_density > 0.001) {
|
|
vec3 cam_wpos = cam_pos.xyz + focus_off.xyz;
|
|
|
|
vec3 adjusted_dir = (vec4(cam_dir, 0) * rain_dir_mat).xyz;
|
|
|
|
vec2 dir2d = adjusted_dir.xy;
|
|
vec3 rorigin = cam_pos.xyz + focus_off.xyz + 0.5;
|
|
vec3 rpos = vec3(0.0);
|
|
float t = 0.0;
|
|
const float PLANCK = 0.01;
|
|
for (int i = 0; i < 14 /* log2(64) * 2 + 2 */; i ++) {
|
|
float scale = min(pow(2, ceil(t / 2.0)), 32);
|
|
vec2 deltas = (step(vec2(0), dir2d) - fract(rpos.xy / scale + 100.0)) / dir2d;
|
|
float jump = max(min(deltas.x, deltas.y) * scale, PLANCK);
|
|
t += jump;
|
|
|
|
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
|
|
if (t >= 64.0) { break; }
|
|
#else
|
|
if (t >= 16.0) { break; }
|
|
#endif
|
|
|
|
rpos = rorigin + adjusted_dir * t;
|
|
|
|
vec2 diff = abs(round(rpos.xy) - rpos.xy);
|
|
vec3 wall_pos = vec3((diff.x > diff.y) ? rpos.xy : rpos.yx, rpos.z + integrated_rain_vel);
|
|
wall_pos.xz *= vec2(4, 0.3);
|
|
wall_pos.z += hash_two(uvec2(wall_pos.xy + vec2(0, 0.5)));
|
|
|
|
float depth_adjust = fract(hash_two(uvec2(wall_pos.xz) + 500u));
|
|
float wpos_dist = t - jump * depth_adjust;
|
|
vec3 wpos = cam_pos.xyz + dir * wpos_dist;
|
|
|
|
if (wpos_dist > dist) { break; }
|
|
vec2 wall_pos_half = fract(wall_pos.xz) - 0.5;
|
|
if (dot(wall_pos_half, wall_pos_half) < 0.01 + pow(max(0.0, wpos_dist - (dist - 0.25)) / 0.25, 4.0) * 0.2) {
|
|
float density = rain_density * rain_occlusion_at(wpos);
|
|
if (fract(hash_two(uvec2(wall_pos.xz) + 1000u)) >= density) { continue; }
|
|
|
|
float alpha = 0.5 * clamp((wpos_dist - 1.0) * 0.5, 0.0, 1.0);
|
|
float light = dot(color.rgb, vec3(1)) + 0.05 + (get_sun_brightness() + get_moon_brightness()) * 0.2;
|
|
color.rgb = mix(color.rgb, vec3(0.3, 0.35, 0.5) * light, alpha);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
tgt_color = vec4(color.rgb, 1);
|
|
}
|