switch to lock-free item list

This commit is contained in:
Pascal Kuthe 2023-08-02 18:45:55 +02:00
parent 2cbb46e738
commit 6cc59600e2
No known key found for this signature in database
GPG Key ID: D715E8655AE166A6
5 changed files with 860 additions and 293 deletions

595
src/boxcar.rs Normal file
View File

@ -0,0 +1,595 @@
//! Adapted from the `boxcar` crate at https://github.com/ibraheemdev/boxcar/blob/master/src/raw.rs
//! under MIT licenes:
//!
//! Copyright (c) 2022 Ibraheem Ahmed
//!
//! Permission is hereby granted, free of charge, to any person obtaining a copy
//! of this software and associated documentation files (the "Software"), to deal
//! in the Software without restriction, including without limitation the rights
//! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//! copies of the Software, and to permit persons to whom the Software is
//! furnished to do so, subject to the following conditions:
//!
//! The above copyright notice and this permission notice shall be included in all
//! copies or substantial portions of the Software.
//!
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//! SOFTWARE.
use std::alloc::Layout;
use std::cell::UnsafeCell;
use std::mem::MaybeUninit;
use std::sync::atomic::{AtomicBool, AtomicPtr, AtomicU32, AtomicU64, Ordering};
use std::{ptr, slice};
use crate::{Item, Utf32String};
const BUCKETS: u32 = u32::BITS - SKIP_BUCKET;
const MAX_ENTRIES: u32 = u32::MAX - SKIP;
/// A lock-free, append-only vector.
pub(crate) struct Vec<T> {
/// a counter used to retrieve a unique index to push to.
///
/// this value may be more than the true length as it will
/// be incremented before values are actually stored.
inflight: AtomicU64,
/// buckets of length 32, 64 .. 2^31
buckets: [Bucket<T>; BUCKETS as usize],
/// the number of initialized elements in this vector
count: AtomicU32,
/// the number of matcher columns in this vector, its absoletly critical that
/// this remains constant and after initilaziaton (safety invariant) since
/// it is used to calculate the Entry layou
columns: u32,
}
impl<T> Vec<T> {
/// Constructs a new, empty `Vec<T>` with the specified capacity and matcher columns.
pub fn with_capacity(capacity: u32, columns: u32) -> Vec<T> {
assert_ne!(columns, 0, "there must be atleast one matcher column");
let init = match capacity {
0 => 0,
// initialize enough buckets for `capacity` elements
n => Location::of(n).bucket,
};
let mut buckets = [ptr::null_mut(); BUCKETS as usize];
for (i, bucket) in buckets[..=init as usize].iter_mut().enumerate() {
let len = Location::bucket_len(i as u32);
*bucket = unsafe { Bucket::alloc(len, columns) };
}
Vec {
buckets: buckets.map(Bucket::new),
inflight: AtomicU64::new(0),
count: AtomicU32::new(0),
columns,
}
}
pub fn columns(&self) -> u32 {
self.columns
}
/// Returns the number of elements in the vector.
pub fn count(&self) -> u32 {
self.count.load(Ordering::Acquire)
}
// Returns a reference to the element at the given index.
//
// # Safety
//
// Entry at `index` must be initialized.
pub unsafe fn get_unchecked(&self, index: u32) -> Item<'_, T> {
let location = Location::of(index);
// safety: caller guarantees the entry is initialized
unsafe {
let entries = self
.buckets
.get_unchecked(location.bucket as usize)
.entries
.load(Ordering::Acquire);
debug_assert!(!entries.is_null());
let entry = Bucket::<T>::get(entries, location.entry, self.columns);
debug_assert!((*entry).active.load(Ordering::Acquire));
Entry::read(entry, self.columns)
}
}
/// Returns a reference to the element at the given index.
pub fn get(&self, index: u32) -> Option<Item<'_, T>> {
let location = Location::of(index);
unsafe {
// safety: `location.bucket` is always in bounds
let entries = self
.buckets
.get_unchecked(location.bucket as usize)
.entries
.load(Ordering::Acquire);
// bucket is uninitialized
if entries.is_null() {
return None;
}
// safety: `location.entry` is always in bounds for it's bucket
let entry = Bucket::<T>::get(entries, location.entry, self.columns);
// safety: the entry is active
(*entry)
.active
.load(Ordering::Acquire)
.then(|| Entry::read(entry, self.columns))
}
}
/// Appends an element to the back of the vector.
pub fn push(&self, value: T, fill_columns: impl FnOnce(&mut [Utf32String])) -> u32 {
let index = self.inflight.fetch_add(1, Ordering::Release);
// the inflight counter is a `u64` to catch overflows of the vector'scapacity
let index: u32 = index.try_into().expect("overflowed maximum capacity");
let location = Location::of(index);
// eagerly allocate the next bucket if we are close to the end of this one
if index == (location.bucket_len - (location.bucket_len >> 3)) {
if let Some(next_bucket) = self.buckets.get(location.bucket as usize + 1) {
Vec::get_or_alloc(next_bucket, location.bucket_len << 1, self.columns);
}
}
// safety: `location.bucket` is always in bounds
let bucket = unsafe { self.buckets.get_unchecked(location.bucket as usize) };
let mut entries = bucket.entries.load(Ordering::Acquire);
// the bucket has not been allocated yet
if entries.is_null() {
entries = Vec::get_or_alloc(bucket, location.bucket_len, self.columns);
}
unsafe {
// safety: `location.entry` is always in bounds for it's bucket
let entry = Bucket::get(entries, location.entry, self.columns);
// safety: we have unique access to this entry.
//
// 1. it is impossible for another thread to attempt a `push`
// to this location as we retrieved it from `inflight.fetch_add`
//
// 2. any thread trying to `get` this entry will see `active == false`,
// and will not try to access it
(*entry).slot.get().write(MaybeUninit::new(value));
for col in Entry::matcher_cols_raw(entry, self.columns) {
col.get().write(MaybeUninit::new(Utf32String::default()))
}
fill_columns(Entry::matcher_cols_mut(entry, self.columns));
// let other threads know that this entry is active
(*entry).active.store(true, Ordering::Release);
}
// increase the true count
self.count.fetch_add(1, Ordering::Release);
index
}
/// race to initialize a bucket
fn get_or_alloc(bucket: &Bucket<T>, len: u32, cols: u32) -> *mut Entry<T> {
let entries = unsafe { Bucket::alloc(len, cols) };
match bucket.entries.compare_exchange(
ptr::null_mut(),
entries,
Ordering::Release,
Ordering::Acquire,
) {
Ok(_) => entries,
Err(found) => unsafe {
Bucket::dealloc(entries, len, cols);
found
},
}
}
/// Returns an iterator over the vector starting at `start`
/// the iterator is deterministically sized and will not grow
/// as more elements are pushed
pub unsafe fn snapshot(&self, start: u32) -> Iter<'_, T> {
let end = self
.inflight
.load(Ordering::Acquire)
.min(MAX_ENTRIES as u64) as u32;
assert!(start <= end, "index {start} is out of bounds!");
Iter {
location: Location::of(start),
vec: self,
idx: start,
end,
}
}
/// Returns an iterator over the vector starting at `start`
/// the iterator is deterministically sized and will not grow
/// as more elements are pushed
pub unsafe fn par_snapshot(&self, start: u32) -> ParIter<'_, T> {
let end = self
.inflight
.load(Ordering::Acquire)
.min(MAX_ENTRIES as u64) as u32;
assert!(start <= end, "index {start} is out of bounds!");
ParIter {
start,
end,
vec: self,
}
}
}
impl<T> Drop for Vec<T> {
fn drop(&mut self) {
for (i, bucket) in self.buckets.iter_mut().enumerate() {
let entries = *bucket.entries.get_mut();
if entries.is_null() {
break;
}
let len = Location::bucket_len(i as u32);
// safety: in drop
unsafe { Bucket::dealloc(entries, len, self.columns) }
}
}
}
type SnapshotItem<'v, T> = (u32, Option<Item<'v, T>>);
pub struct Iter<'v, T> {
location: Location,
idx: u32,
end: u32,
vec: &'v Vec<T>,
}
impl<T> Iter<'_, T> {
pub fn end(&self) -> u32 {
self.end
}
}
impl<'v, T> Iterator for Iter<'v, T> {
type Item = SnapshotItem<'v, T>;
fn size_hint(&self) -> (usize, Option<usize>) {
(
(self.end - self.idx) as usize,
Some((self.end - self.idx) as usize),
)
}
fn next(&mut self) -> Option<SnapshotItem<'v, T>> {
if self.end == self.idx {
return None;
}
debug_assert!(self.idx < self.end, "huh {} {}", self.idx, self.end);
debug_assert!(self.end as u64 <= self.vec.inflight.load(Ordering::Acquire));
loop {
let entries = unsafe {
self.vec
.buckets
.get_unchecked(self.location.bucket as usize)
.entries
.load(Ordering::Acquire)
};
debug_assert!(self.location.bucket < BUCKETS);
if self.location.entry < self.location.bucket_len {
if entries.is_null() {
// we still want to yield these
let index = self.idx;
self.location.entry += 1;
self.idx += 1;
return Some((index, None));
}
// safety: bounds and null checked above
let entry = unsafe { Bucket::get(entries, self.location.entry, self.vec.columns) };
let index = self.idx;
self.location.entry += 1;
self.idx += 1;
let entry = unsafe {
(*entry)
.active
.load(Ordering::Acquire)
.then(|| Entry::read(entry, self.vec.columns))
};
return Some((index, entry));
}
self.location.entry = 0;
self.location.bucket += 1;
if self.location.bucket < BUCKETS {
self.location.bucket_len = Location::bucket_len(self.location.bucket);
}
}
}
}
impl<T> ExactSizeIterator for Iter<'_, T> {}
impl<T> DoubleEndedIterator for Iter<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
unimplemented!()
}
}
pub struct ParIter<'v, T> {
end: u32,
start: u32,
vec: &'v Vec<T>,
}
impl<'v, T> ParIter<'v, T> {
pub fn end(&self) -> u32 {
self.end
}
}
impl<'v, T: Send + Sync> rayon::iter::ParallelIterator for ParIter<'v, T> {
type Item = SnapshotItem<'v, T>;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: rayon::iter::plumbing::UnindexedConsumer<Self::Item>,
{
rayon::iter::plumbing::bridge(self, consumer)
}
fn opt_len(&self) -> Option<usize> {
Some((self.end - self.start) as usize)
}
}
impl<T: Send + Sync> rayon::iter::IndexedParallelIterator for ParIter<'_, T> {
fn len(&self) -> usize {
(self.end - self.start) as usize
}
fn drive<C: rayon::iter::plumbing::Consumer<Self::Item>>(self, consumer: C) -> C::Result {
rayon::iter::plumbing::bridge(self, consumer)
}
fn with_producer<CB>(self, callback: CB) -> CB::Output
where
CB: rayon::iter::plumbing::ProducerCallback<Self::Item>,
{
callback.callback(ParIterProducer {
start: self.start,
end: self.end,
vec: self.vec,
})
}
}
struct ParIterProducer<'v, T: Send> {
start: u32,
end: u32,
vec: &'v Vec<T>,
}
impl<'v, T: 'v + Send + Sync> rayon::iter::plumbing::Producer for ParIterProducer<'v, T> {
type Item = SnapshotItem<'v, T>;
type IntoIter = Iter<'v, T>;
fn into_iter(self) -> Self::IntoIter {
debug_assert!(self.start <= self.end);
Iter {
location: Location::of(self.start),
idx: self.start,
end: self.end,
vec: self.vec,
}
}
fn split_at(self, index: usize) -> (Self, Self) {
assert!(index <= (self.end - self.start) as usize);
let index = index as u32;
(
ParIterProducer {
start: self.start,
end: self.start + index,
vec: self.vec,
},
ParIterProducer {
start: self.start + index,
end: self.end,
vec: self.vec,
},
)
}
}
struct Bucket<T> {
entries: AtomicPtr<Entry<T>>,
}
impl<T> Bucket<T> {
fn layout(len: u32, layout: Layout) -> Layout {
Layout::from_size_align(layout.size() * len as usize, layout.align())
.expect("exceeded maximum allocation size")
}
unsafe fn alloc(len: u32, cols: u32) -> *mut Entry<T> {
let layout = Entry::<T>::layout(cols);
let arr_layout = Self::layout(len, layout);
let entries = std::alloc::alloc(arr_layout);
if entries.is_null() {
std::alloc::handle_alloc_error(arr_layout)
}
for i in 0..len {
let active = entries.add(i as usize * layout.size()) as *mut AtomicBool;
active.write(AtomicBool::new(false))
}
entries as *mut Entry<T>
}
unsafe fn dealloc(entries: *mut Entry<T>, len: u32, cols: u32) {
let layout = Entry::<T>::layout(cols);
let arr_layout = Self::layout(len, layout);
for i in 0..len {
let entry = Bucket::get(entries, i, cols);
if *(*entry).active.get_mut() {
ptr::drop_in_place((*(*entry).slot.get()).as_mut_ptr());
for matcher_col in Entry::matcher_cols_raw(entry, cols) {
ptr::drop_in_place((*matcher_col.get()).as_mut_ptr());
}
}
}
std::alloc::dealloc(entries as *mut u8, arr_layout)
}
unsafe fn get(entries: *mut Entry<T>, idx: u32, cols: u32) -> *mut Entry<T> {
let layout = Entry::<T>::layout(cols);
let ptr = entries as *mut u8;
ptr.add(layout.size() * idx as usize) as *mut Entry<T>
}
fn new(entries: *mut Entry<T>) -> Bucket<T> {
Bucket {
entries: AtomicPtr::new(entries),
}
}
}
#[repr(C)]
struct Entry<T> {
active: AtomicBool,
slot: UnsafeCell<MaybeUninit<T>>,
tail: [UnsafeCell<MaybeUninit<Utf32String>>; 0],
}
impl<T> Entry<T> {
fn layout(cols: u32) -> Layout {
let head = Layout::new::<Self>();
let tail = Layout::array::<Utf32String>(cols as usize).expect("invalid memory layout");
head.extend(tail)
.expect("invalid memory layout")
.0
.pad_to_align()
}
unsafe fn matcher_cols_raw<'a>(
ptr: *mut Entry<T>,
cols: u32,
) -> &'a [UnsafeCell<MaybeUninit<Utf32String>>] {
// this whole thing looks weird. The reason we do this is that
// we must make sure the pointer retains its provenance which may (or may not?)
// be lost if we used tail.as_ptr()
let tail = std::ptr::addr_of!((*ptr).tail) as *const u8;
let offset = tail.offset_from(ptr as *mut u8) as usize;
let ptr = (ptr as *mut u8).add(offset) as *mut _;
slice::from_raw_parts(ptr, cols as usize)
}
unsafe fn matcher_cols_mut<'a>(ptr: *mut Entry<T>, cols: u32) -> &'a mut [Utf32String] {
// this whole thing looks weird. The reason we do this is that
// we must make sure the pointer retains its provenance which may (or may not?)
// be lost if we used tail.as_ptr()
let tail = std::ptr::addr_of!((*ptr).tail) as *const u8;
let offset = tail.offset_from(ptr as *mut u8) as usize;
let ptr = (ptr as *mut u8).add(offset) as *mut _;
slice::from_raw_parts_mut(ptr, cols as usize)
}
// # Safety
//
// Value must be initialized.
unsafe fn read<'a>(ptr: *mut Entry<T>, cols: u32) -> Item<'a, T> {
// this whole thing looks weird. The reason we do this is that
// we must make sure the pointer retains its provenance which may (or may not?)
// be lost if we used tail.as_ptr()
let data = (*(*ptr).slot.get()).assume_init_ref();
let tail = std::ptr::addr_of!((*ptr).tail) as *const u8;
let offset = tail.offset_from(ptr as *mut u8) as usize;
let ptr = (ptr as *mut u8).add(offset) as *mut _;
let matcher_columns = slice::from_raw_parts(ptr, cols as usize);
Item {
data,
matcher_columns,
}
}
}
#[derive(Debug)]
struct Location {
// the index of the bucket
bucket: u32,
// the length of `bucket`
bucket_len: u32,
// the index of the entry in `bucket`
entry: u32,
}
// skip the shorter buckets to avoid unnecessary allocations.
// this also reduces the maximum capacity of a vector.
const SKIP: u32 = 32;
const SKIP_BUCKET: u32 = (u32::BITS - SKIP.leading_zeros()) - 1;
impl Location {
fn of(index: u32) -> Location {
let skipped = index.checked_add(SKIP).expect("exceeded maximum length");
let bucket = u32::BITS - skipped.leading_zeros();
let bucket = bucket - (SKIP_BUCKET + 1);
let bucket_len = Location::bucket_len(bucket);
let entry = skipped ^ bucket_len;
Location {
bucket,
bucket_len,
entry,
}
}
fn bucket_len(bucket: u32) -> u32 {
1 << (bucket + SKIP_BUCKET)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn location() {
assert_eq!(Location::bucket_len(0), 32);
for i in 0..32 {
let loc = Location::of(i);
assert_eq!(loc.bucket_len, 32);
assert_eq!(loc.bucket, 0);
assert_eq!(loc.entry, i);
}
assert_eq!(Location::bucket_len(1), 64);
for i in 33..96 {
let loc = Location::of(i);
assert_eq!(loc.bucket_len, 64);
assert_eq!(loc.bucket, 1);
assert_eq!(loc.entry, i - 32);
}
assert_eq!(Location::bucket_len(2), 128);
for i in 96..224 {
let loc = Location::of(i);
assert_eq!(loc.bucket_len, 128);
assert_eq!(loc.bucket, 2);
assert_eq!(loc.entry, i - 96);
}
let max = Location::of(MAX_ENTRIES);
assert_eq!(max.bucket, BUCKETS - 1);
assert_eq!(max.bucket_len, 1 << 31);
assert_eq!(max.entry, (1 << 31) - 1);
}
}

View File

@ -1,140 +1 @@
use std::mem::swap;
use std::ptr::NonNull;
use crate::Utf32String;
pub(crate) struct ItemCache {
live: Vec<Item>,
evicted: Vec<Item>,
}
impl ItemCache {
pub(crate) fn new() -> Self {
Self {
live: Vec::with_capacity(1024),
evicted: Vec::new(),
}
}
pub(crate) fn clear(&mut self) {
if self.evicted.is_empty() {
self.evicted.reserve(1024);
swap(&mut self.evicted, &mut self.live)
} else {
self.evicted.append(&mut self.live)
}
}
pub(crate) fn cleared(&self) -> bool {
!self.evicted.is_empty()
}
pub(crate) fn push(&mut self, item: Box<[Utf32String]>) {
self.live.push(Item {
cols: Box::leak(item).into(),
})
}
pub(crate) fn get(&mut self) -> &mut [Item] {
&mut self.live
}
}
#[derive(PartialEq, Eq, Clone)]
pub struct Item {
// TODO: small vec optimization??
cols: NonNull<[Utf32String]>,
}
impl std::fmt::Debug for Item {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ItemText")
.field("cols", &self.cols())
.finish()
}
}
unsafe impl Send for Item {}
unsafe impl Sync for Item {}
impl Item {
pub fn cols(&self) -> &[Utf32String] {
// safety: cols is basically a box and treated the same as a box,
// however there can be other references so using a box (unique ptr)
// would be an alias violation
unsafe { self.cols.as_ref() }
}
}
impl Drop for Item {
fn drop(&mut self) {
// safety: cols is basically a box and treated the same as a box,
// however there can be other references (that won't be accessed
// anymore at this point) so using a box (unique ptr) would be an alias
// violation
unsafe { drop(Box::from_raw(self.cols.as_ptr())) }
}
}
#[derive(Debug, Clone, Copy)]
pub(crate) struct ItemSnapshot {
cols: NonNull<[Utf32String]>,
pub(crate) len: u32,
}
unsafe impl Send for ItemSnapshot {}
unsafe impl Sync for ItemSnapshot {}
#[derive(Debug, Clone)]
pub(crate) struct ItemsSnapshot {
items: Vec<ItemSnapshot>,
}
impl ItemsSnapshot {
pub(crate) fn new(items: &ItemCache) -> Self {
Self {
items: items
.live
.iter()
.map(|item| ItemSnapshot {
cols: item.cols,
len: item.cols().iter().map(|s| s.len() as u32).sum(),
})
.collect(),
}
}
pub(crate) fn outdated(&self, items: &ItemCache) -> bool {
items.live.len() != self.items.len()
}
pub(crate) fn len(&self) -> usize {
self.items.len()
}
pub(crate) fn update(&mut self, items: &ItemCache) -> bool {
let cleared = !items.evicted.is_empty();
// drop in another thread to ensure we don't wait for a long drop here
if cleared {
self.items.clear();
};
let start = self.items.len();
self.items
.extend(items.live[start..].iter().map(|item| ItemSnapshot {
cols: item.cols,
len: item.cols().iter().map(|s| s.len() as u32).sum(),
}));
cleared
}
pub(crate) unsafe fn get(&self) -> &[ItemSnapshot] {
&self.items
}
}
impl ItemSnapshot {
pub(crate) fn cols(&self) -> &[Utf32String] {
// safety: we only hand out ItemSnapshot ranges
// if the caller asserted via the unsafe ItemsSnapshot::get
// function that the pointers are valid
unsafe { self.cols.as_ref() }
}
}

View File

@ -1,24 +1,71 @@
use std::cmp::Reverse; use std::cmp::Reverse;
use std::ops::Deref; use std::sync::atomic::{self, AtomicBool, Ordering};
use std::sync::atomic::{self, AtomicBool};
use std::sync::Arc; use std::sync::Arc;
use std::time::Duration; use std::time::Duration;
use crate::items::{Item, ItemCache}; use parking_lot::Mutex;
use crate::worker::Worker;
use parking_lot::lock_api::ArcMutexGuard;
use rayon::ThreadPool; use rayon::ThreadPool;
pub use crate::pattern::{CaseMatching, MultiPattern, Pattern, PatternKind}; pub use crate::pattern::{CaseMatching, MultiPattern, Pattern, PatternKind};
pub use crate::utf32_string::Utf32String; pub use crate::utf32_string::Utf32String;
use crate::worker::Woker;
pub use nucleo_matcher::{chars, Matcher, MatcherConfig, Utf32Str};
mod items; mod boxcar;
mod pattern; mod pattern;
mod utf32_string; mod utf32_string;
mod worker; mod worker;
pub use nucleo_matcher::{chars, Matcher, MatcherConfig, Utf32Str};
use parking_lot::{Mutex, MutexGuard, RawMutex}; pub struct Item<'a, T> {
pub data: &'a T,
pub matcher_columns: &'a [Utf32String],
}
pub struct Injector<T> {
items: Arc<boxcar::Vec<T>>,
notify: Arc<(dyn Fn() + Sync + Send)>,
}
impl<T> Clone for Injector<T> {
fn clone(&self) -> Self {
Injector {
items: self.items.clone(),
notify: self.notify.clone(),
}
}
}
impl<T> Injector<T> {
/// Appends an element to the back of the vector.
pub fn push(&self, value: T, fill_columns: impl FnOnce(&mut [Utf32String])) -> u32 {
let idx = self.items.push(value, fill_columns);
(self.notify)();
idx
}
/// Returns the total number of items in the current
/// queue
pub fn injected_items(&self) -> u32 {
self.items.count()
}
/// Returns a reference to the item at the given index.
///
/// # Safety
///
/// Item at `index` must be initialized. That means you must have observed
/// `push` returning this value or `get` retunring `Some` for this value.
/// Just because a later index is initialized doesn't mean that this index
/// is initialized
pub unsafe fn get_unchecked(&self, index: u32) -> Item<'_, T> {
self.items.get_unchecked(index)
}
/// Returns a reference to the element at the given index.
pub fn get(&self, index: u32) -> Option<Item<'_, T>> {
self.items.get(index)
}
}
#[derive(PartialEq, Eq, Debug, Clone, Copy)] #[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub struct Match { pub struct Match {
@ -32,139 +79,134 @@ pub struct Status {
pub running: bool, pub running: bool,
} }
#[derive(Clone)] pub struct Nucleo<T: Sync + Send + 'static> {
pub struct Items<T> {
cache: Arc<Mutex<ItemCache>>,
items: Arc<Mutex<Vec<T>>>,
notify: Arc<(dyn Fn() + Sync + Send)>,
}
impl<T: Sync + Send> Items<T> {
pub fn clear(&mut self) {
self.items.lock().clear();
self.cache.lock().clear();
}
pub fn append(&mut self, items: impl Iterator<Item = (T, Box<[Utf32String]>)>) {
let mut cache = self.cache.lock();
let mut items_ = self.items.lock();
items_.extend(items.map(|(item, text)| {
cache.push(text);
item
}));
// notify that a new tick will be necessary
(self.notify)();
}
pub fn get(&self) -> impl Deref<Target = [T]> + '_ {
MutexGuard::map(self.items.lock(), |items| items.as_mut_slice())
}
pub fn get_matcher_items(&self) -> impl Deref<Target = [Item]> + '_ {
MutexGuard::map(self.cache.lock(), |items| items.get())
}
}
pub struct Nucleo<T: Sync + Send> {
// the way the API is build we totally don't actually need these to be Arcs // the way the API is build we totally don't actually need these to be Arcs
// but this lets us avoid some unsafe // but this lets us avoid some unsafe
worker: Arc<Mutex<Worker>>,
canceled: Arc<AtomicBool>, canceled: Arc<AtomicBool>,
should_notify: Arc<AtomicBool>,
worker: Arc<Mutex<Woker<T>>>,
pool: ThreadPool, pool: ThreadPool,
pub items: Items<T>, cleared: bool,
item_count: u32,
pub matches: Vec<Match>, pub matches: Vec<Match>,
pub pattern: MultiPattern, pub pattern: MultiPattern,
should_notify: Arc<AtomicBool>, pub notify: Arc<(dyn Fn() + Sync + Send)>,
items: Arc<boxcar::Vec<T>>,
} }
impl<T: Sync + Send> Nucleo<T> { impl<T: Sync + Send + 'static> Nucleo<T> {
pub fn new( pub fn new(
config: MatcherConfig, config: MatcherConfig,
notify: Arc<(dyn Fn() + Sync + Send)>, notify: Arc<(dyn Fn() + Sync + Send)>,
num_threads: Option<usize>, num_threads: Option<usize>,
case_matching: CaseMatching, case_matching: CaseMatching,
cols: usize, columns: u32,
items: impl Iterator<Item = (T, Box<[Utf32String]>)>,
) -> Self { ) -> Self {
let mut cache = ItemCache::new(); let (pool, worker) = Woker::new(num_threads, config, notify.clone(), columns);
let items: Vec<_> = items
.map(|(item, text)| {
cache.push(text);
item
})
.collect();
let matches: Vec<_> = (0..items.len())
.map(|i| Match {
score: 0,
idx: i as u32,
})
.collect();
let (pool, worker) =
Worker::new(notify.clone(), num_threads, config, matches.clone(), &cache);
Self { Self {
canceled: worker.canceled.clone(), canceled: worker.canceled.clone(),
should_notify: worker.should_notify.clone(), should_notify: worker.should_notify.clone(),
items: Items { items: worker.items.clone(),
cache: Arc::new(Mutex::new(cache)),
items: Arc::new(Mutex::new(items)),
notify,
},
pool, pool,
matches, matches: Vec::with_capacity(2 * 1024),
pattern: MultiPattern::new(&config, case_matching, cols), pattern: MultiPattern::new(&config, case_matching, columns as usize),
worker: Arc::new(Mutex::new(worker)), worker: Arc::new(Mutex::new(worker)),
cleared: false,
item_count: 0,
notify,
} }
} }
/// Returns the total number of items
pub fn item_count(&self) -> u32 {
self.item_count
}
pub fn injector(&self) -> Injector<T> {
Injector {
items: self.items.clone(),
notify: self.notify.clone(),
}
}
/// Returns a reference to the item at the given index.
///
/// # Safety
///
/// Item at `index` must be initialized. That means you must have observed
/// `push` returning this value or `get` retunring `Some` for this value.
/// Just because a later index is initialized doesn't mean that this index
/// is initialized
pub unsafe fn get_unchecked(&self, index: u32) -> Item<'_, T> {
self.items.get_unchecked(index)
}
/// Returns a reference to the element at the given index.
pub fn get(&self, index: u32) -> Option<Item<'_, T>> {
self.items.get(index)
}
/// Clears all items
pub fn clear(&mut self) {
self.canceled.store(true, Ordering::Relaxed);
self.items = Arc::new(boxcar::Vec::with_capacity(1024, self.items.columns()));
self.cleared = true
}
pub fn update_config(&mut self, config: MatcherConfig) { pub fn update_config(&mut self, config: MatcherConfig) {
self.worker.lock().update_config(config) self.worker.lock().update_config(config)
} }
pub fn push(&self, value: T, fill_columns: impl FnOnce(&mut [Utf32String])) -> u32 {
let idx = self.items.push(value, fill_columns);
(self.notify)();
idx
}
pub fn tick(&mut self, timeout: u64) -> Status { pub fn tick(&mut self, timeout: u64) -> Status {
self.should_notify.store(false, atomic::Ordering::Relaxed); self.should_notify.store(false, atomic::Ordering::Relaxed);
let status = self.pattern.status(); let status = self.pattern.status();
let items = self.items.cache.lock_arc(); let canceled = status != pattern::Status::Unchanged || self.cleared;
let canceled = status != pattern::Status::Unchanged || items.cleared(); let res = self.tick_inner(timeout, canceled, status);
let res = self.tick_inner(timeout, canceled, items, status); self.cleared = false;
if !canceled { if !canceled {
self.should_notify.store(true, atomic::Ordering::Relaxed);
return res; return res;
} }
let items = self.items.cache.lock_arc(); self.tick_inner(timeout, false, pattern::Status::Unchanged)
let res = self.tick_inner(timeout, false, items, pattern::Status::Unchanged);
self.should_notify.store(true, atomic::Ordering::Relaxed);
res
} }
fn tick_inner( fn tick_inner(&mut self, timeout: u64, canceled: bool, status: pattern::Status) -> Status {
&mut self,
timeout: u64,
canceled: bool,
items: ArcMutexGuard<RawMutex, ItemCache>,
status: pattern::Status,
) -> Status {
let mut inner = if canceled { let mut inner = if canceled {
self.pattern.reset_status(); self.pattern.reset_status();
self.canceled.store(true, atomic::Ordering::Relaxed); self.canceled.store(true, atomic::Ordering::Relaxed);
self.worker.lock_arc() self.worker.lock_arc()
} else { } else {
let Some(worker) = self.worker.try_lock_arc_for(Duration::from_millis(timeout)) else { let Some(worker) = self.worker.try_lock_arc_for(Duration::from_millis(timeout)) else {
self.should_notify.store(true, Ordering::Release);
return Status{ changed: false, running: true }; return Status{ changed: false, running: true };
}; };
worker worker
}; };
let changed = inner.running; let changed = inner.running;
let running = canceled || self.items.count() > inner.item_count();
if inner.running { if inner.running {
inner.running = false; inner.running = false;
self.matches.clone_from(&inner.matches); if !inner.was_canceled {
self.item_count = inner.item_count();
self.matches.clone_from(&inner.matches);
}
} }
let running = canceled || inner.items.outdated(&items);
if running { if running {
inner.pattern.clone_from(&self.pattern); inner.pattern.clone_from(&self.pattern);
self.canceled.store(false, atomic::Ordering::Relaxed); self.canceled.store(false, atomic::Ordering::Relaxed);
self.pool.spawn(move || unsafe { inner.run(items, status) }) if !canceled {
self.should_notify.store(true, atomic::Ordering::Release);
}
let cleared = self.cleared;
self.pool
.spawn(move || unsafe { inner.run(status, cleared) })
} }
Status { changed, running } Status { changed, running }
} }
@ -181,6 +223,7 @@ impl<T: Sync + Send> Drop for Nucleo<T> {
} }
} }
} }
/// convenicne function to easily fuzzy match /// convenicne function to easily fuzzy match
/// on a (relatively small list of inputs). This is not recommended for building a full tui /// on a (relatively small list of inputs). This is not recommended for building a full tui
/// application that can match large numbers of matches as all matching is done on the current /// application that can match large numbers of matches as all matching is done on the current

View File

@ -174,10 +174,10 @@ impl MultiPattern {
pub fn new( pub fn new(
matcher_config: &MatcherConfig, matcher_config: &MatcherConfig,
case_matching: CaseMatching, case_matching: CaseMatching,
cols: usize, columns: usize,
) -> MultiPattern { ) -> MultiPattern {
MultiPattern { MultiPattern {
cols: vec![Pattern::new(matcher_config, case_matching); cols], cols: vec![Pattern::new(matcher_config, case_matching); columns],
} }
} }

View File

@ -3,13 +3,11 @@ use std::sync::atomic::{self, AtomicBool};
use std::sync::Arc; use std::sync::Arc;
use nucleo_matcher::MatcherConfig; use nucleo_matcher::MatcherConfig;
use parking_lot::lock_api::ArcMutexGuard; use parking_lot::Mutex;
use parking_lot::RawMutex;
use rayon::{prelude::*, ThreadPool}; use rayon::{prelude::*, ThreadPool};
use crate::items::{ItemCache, ItemsSnapshot};
use crate::pattern::{self, MultiPattern}; use crate::pattern::{self, MultiPattern};
use crate::Match; use crate::{boxcar, Match};
struct Matchers(Box<[UnsafeCell<nucleo_matcher::Matcher>]>); struct Matchers(Box<[UnsafeCell<nucleo_matcher::Matcher>]>);
@ -24,18 +22,24 @@ impl Matchers {
unsafe impl Sync for Matchers {} unsafe impl Sync for Matchers {}
unsafe impl Send for Matchers {} unsafe impl Send for Matchers {}
pub(crate) struct Worker { pub(crate) struct Woker<T: Sync + Send + 'static> {
notify: Arc<(dyn Fn() + Sync + Send)>,
pub(crate) running: bool, pub(crate) running: bool,
pub(crate) items: ItemsSnapshot,
matchers: Matchers, matchers: Matchers,
pub(crate) matches: Vec<Match>, pub(crate) matches: Vec<Match>,
pub(crate) pattern: MultiPattern, pub(crate) pattern: MultiPattern,
pub(crate) canceled: Arc<AtomicBool>, pub(crate) canceled: Arc<AtomicBool>,
pub(crate) should_notify: Arc<AtomicBool>, pub(crate) should_notify: Arc<AtomicBool>,
pub(crate) was_canceled: bool,
pub(crate) last_snapshot: u32,
notify: Arc<(dyn Fn() + Sync + Send)>,
pub(crate) items: Arc<boxcar::Vec<T>>,
in_flight: Vec<u32>,
} }
impl Worker { impl<T: Sync + Send + 'static> Woker<T> {
pub(crate) fn item_count(&self) -> u32 {
self.last_snapshot - self.in_flight.len() as u32
}
pub(crate) fn update_config(&mut self, config: MatcherConfig) { pub(crate) fn update_config(&mut self, config: MatcherConfig) {
for matcher in self.matchers.0.iter_mut() { for matcher in self.matchers.0.iter_mut() {
matcher.get_mut().config = config; matcher.get_mut().config = config;
@ -43,12 +47,11 @@ impl Worker {
} }
pub(crate) fn new( pub(crate) fn new(
notify: Arc<(dyn Fn() + Sync + Send)>,
worker_threads: Option<usize>, worker_threads: Option<usize>,
config: MatcherConfig, config: MatcherConfig,
matches: Vec<Match>, notify: Arc<(dyn Fn() + Sync + Send)>,
items: &ItemCache, cols: u32,
) -> (ThreadPool, Worker) { ) -> (ThreadPool, Self) {
let worker_threads = worker_threads let worker_threads = worker_threads
.unwrap_or_else(|| std::thread::available_parallelism().map_or(4, |it| it.get())); .unwrap_or_else(|| std::thread::available_parallelism().map_or(4, |it| it.get()));
let pool = rayon::ThreadPoolBuilder::new() let pool = rayon::ThreadPoolBuilder::new()
@ -59,96 +62,161 @@ impl Worker {
let matchers = (0..worker_threads) let matchers = (0..worker_threads)
.map(|_| UnsafeCell::new(nucleo_matcher::Matcher::new(config))) .map(|_| UnsafeCell::new(nucleo_matcher::Matcher::new(config)))
.collect(); .collect();
let worker = Worker { let worker = Woker {
notify,
running: false, running: false,
items: ItemsSnapshot::new(items),
matchers: Matchers(matchers), matchers: Matchers(matchers),
matches, last_snapshot: 0,
matches: Vec::new(),
// just a placeholder // just a placeholder
pattern: MultiPattern::new(&config, crate::CaseMatching::Ignore, 0), pattern: MultiPattern::new(&config, crate::CaseMatching::Ignore, 0),
canceled: Arc::new(AtomicBool::new(false)), canceled: Arc::new(AtomicBool::new(false)),
should_notify: Arc::new(AtomicBool::new(false)), should_notify: Arc::new(AtomicBool::new(false)),
was_canceled: false,
notify,
items: Arc::new(boxcar::Vec::with_capacity(2 * 1024, cols)),
in_flight: Vec::with_capacity(64),
}; };
(pool, worker) (pool, worker)
} }
pub(crate) unsafe fn run( unsafe fn process_new_items(&mut self) {
&mut self,
items_lock: ArcMutexGuard<RawMutex, ItemCache>,
query_status: pattern::Status,
) {
self.running = true;
let mut last_scored_item = self.items.len();
let cleared = self.items.update(&items_lock);
drop(items_lock);
// TODO: be smarter around reusing past results for rescoring
if cleared || query_status == pattern::Status::Rescore {
self.matches.clear();
last_scored_item = 0;
}
let matchers = &self.matchers; let matchers = &self.matchers;
let pattern = &self.pattern; let pattern = &self.pattern;
let items = unsafe { self.items.get() }; self.matches.reserve(self.in_flight.len());
self.in_flight.retain(|&idx| {
let Some(item) = self.items.get(idx) else {
return true;
};
let Some(score) = pattern.score(item.matcher_columns, matchers.get()) else {
return false;
};
self.matches.push(Match { score, idx });
false
});
let new_snapshot = self.items.par_snapshot(self.last_snapshot);
if new_snapshot.end() != self.last_snapshot {
let end = new_snapshot.end();
let in_flight = Mutex::new(&mut self.in_flight);
let items = new_snapshot.filter_map(|(idx, item)| {
let Some(item) = item else {
in_flight.lock().push(idx);
return None;
};
let score = if self.canceled.load(atomic::Ordering::Relaxed) {
0
} else {
pattern.score(item.matcher_columns, matchers.get())?
};
Some(Match { score, idx })
});
self.matches.par_extend(items);
self.last_snapshot = end;
}
}
if self.pattern.cols.iter().all(|pat| pat.is_empty()) { fn remove_in_flight_matches(&mut self) {
let mut off = 0;
self.in_flight.retain(|&i| {
let is_in_flight = self.items.get(i).is_none();
if is_in_flight {
self.matches.remove((i - off) as usize);
off += 1;
}
is_in_flight
});
}
unsafe fn process_new_items_trivial(&mut self) {
let new_snapshot = self.items.snapshot(self.last_snapshot);
if new_snapshot.end() != self.last_snapshot {
let end = new_snapshot.end();
let items = new_snapshot.filter_map(|(idx, item)| {
if item.is_none() {
self.in_flight.push(idx);
return None;
};
Some(Match { score: 0, idx })
});
self.matches.extend(items);
self.last_snapshot = end;
}
}
pub(crate) unsafe fn run(&mut self, pattern_status: pattern::Status, cleared: bool) {
self.running = true;
self.was_canceled = false;
if cleared {
self.last_snapshot = 0;
}
// TODO: be smarter around reusing past results for rescoring
let empty_pattern = self.pattern.cols.iter().all(|pat| pat.is_empty());
if empty_pattern {
self.matches.clear(); self.matches.clear();
self.matches.extend((0..items.len()).map(|i| Match { self.matches
score: 0, .extend((0..self.last_snapshot).map(|idx| Match { score: 0, idx }));
idx: i as u32, // there are usually only very few in flight items (one for each writer)
})); self.remove_in_flight_matches();
if self.should_notify.load(atomic::Ordering::Relaxed) { self.process_new_items_trivial();
if self.should_notify.load(atomic::Ordering::Acquire) {
(self.notify)(); (self.notify)();
} }
return; return;
} }
if query_status != pattern::Status::Unchanged && !self.matches.is_empty() {
self.process_new_items();
if pattern_status == pattern::Status::Rescore {
self.matches.clear();
self.matches
.extend((0..self.last_snapshot).map(|idx| Match { score: 0, idx }));
self.remove_in_flight_matches();
}
let matchers = &self.matchers;
let pattern = &self.pattern;
if pattern_status != pattern::Status::Unchanged && !self.matches.is_empty() {
self.matches self.matches
.par_iter_mut() .par_iter_mut()
.take_any_while(|_| !self.canceled.load(atomic::Ordering::Relaxed)) .take_any_while(|_| !self.canceled.load(atomic::Ordering::Relaxed))
.for_each(|match_| { .for_each(|match_| {
let item = &items[match_.idx as usize]; // safety: in-flight items are never added to the matches
let item = self.items.get_unchecked(match_.idx);
match_.score = pattern match_.score = pattern
.score(item.cols(), unsafe { matchers.get() }) .score(item.matcher_columns, matchers.get())
.unwrap_or(u32::MAX); .unwrap_or(u32::MAX);
}); });
// TODO: do this in parallel? // TODO: do this in parallel?
self.matches.retain(|m| m.score != u32::MAX); self.matches.retain(|m| m.score != u32::MAX);
} }
if last_scored_item != self.items.len() {
let items = items[last_scored_item..]
.par_iter()
.enumerate()
.filter_map(|(i, item)| {
let score = if self.canceled.load(atomic::Ordering::Relaxed) {
u32::MAX - 1
} else {
pattern.score(item.cols(), unsafe { matchers.get() })?
};
Some(Match {
score,
idx: i as u32,
})
});
self.matches.par_extend(items);
}
if !self.canceled.load(atomic::Ordering::Relaxed) { if self.canceled.load(atomic::Ordering::Relaxed) {
self.was_canceled = true;
} else {
// TODO: cancel sort in progress? // TODO: cancel sort in progress?
self.matches.par_sort_unstable_by(|match1, match2| { self.matches.par_sort_unstable_by(|match1, match2| {
match2.score.cmp(&match1.score).then_with(|| { match2.score.cmp(&match1.score).then_with(|| {
// the tie breaker is comparitevly rarely needed so we keep it // the tie breaker is comparitevly rarely needed so we keep it
// in a branch especially because we need to access the items // in a branch especially because we need to access the items
// array here which involves some pointer chasing // array here which involves some pointer chasing
let item1 = &items[match1.idx as usize]; let item1 = self.items.get_unchecked(match1.idx);
let item2 = &items[match2.idx as usize]; let item2 = &self.items.get_unchecked(match2.idx);
(item1.len, match1.idx).cmp(&(item2.len, match2.idx)) let len1: u32 = item1
.matcher_columns
.iter()
.map(|haystack| haystack.len() as u32)
.sum();
let len2 = item2
.matcher_columns
.iter()
.map(|haystack| haystack.len() as u32)
.sum();
(len1, match1.idx).cmp(&(len2, match2.idx))
}) })
}); });
} }
if self.should_notify.load(atomic::Ordering::Relaxed) { if self.should_notify.load(atomic::Ordering::Acquire) {
(self.notify)(); (self.notify)();
} }
} }