1
0
dust/README.md

302 lines
13 KiB
Markdown

# Dust
A programming language that is **fast**, **safe** and **easy to use**.
Dust has a simple, expressive syntax that is easy to read and write. This includes a powerful yet
syntactically modest type system with extensive inference capabilities.
The syntax, safety features and evaluation model are inspired by Rust. The instruction set,
optimization strategies and virtual machine are inspired by Lua and academic research (see the
[Inspiration][] section below). Unlike Rust and other compiled languages, Dust has a very low time
to execution. Simple programs compile in milliseconds, even on modest hardware. Unlike Lua and most
other interpreted languages, Dust is type-safe, with a simple yet powerful type system that enhances
clarity and prevent bugs.
```dust
write_line("Enter your name...")
let name = read_line()
write_line("Hello " + name + "!")
```
## Overview
## Project Status
**Dust is under active development and is not yet ready for general use.** Dust is an ambitious
project that acts as a continuous experiment in language design. Features may be redesigned and
reimplemented at will when they do not meet the project's performance and usability goals. This
approach maximizes the development experience as a learning opportunity and enforces a high standard
of quality but slows down the process of delivering features to users.
## Feature Progress
This list is a rough outline of the features that are planned to be implemented as soon as possible.
*This is not an exhaustive list of all planned features.* This list is updated and rearranged to
maintain a docket of what is being worked on, what is coming next and what can be revisited later.
- [X] Lexer
- [X] Compiler
- [X] VM
- [X] Disassembler (for chunk debugging)
- [ ] Formatter
- [ ] REPL
- CLI
- [X] Run source
- [X] Compile source to a chunk and show disassembly
- [X] Tokenize using the lexer and show token list
- [ ] Format using a built-in formatter
- [ ] Compile to and run from intermediate formats
- [ ] JSON
- [ ] Postcard
- [ ] Integrated REPL
- Basic Values
- [X] No `null` or `undefined` values
- [X] Booleans
- [X] Bytes (unsigned 8-bit)
- [X] Characters (Unicode scalar value)
- [X] Floats (64-bit)
- [X] Functions
- [X] Integers (signed 64-bit)
- [X] Strings (UTF-8)
- Composite Values
- [X] Concrete lists
- [X] Abstract lists (optimization)
- [ ] Concrete maps
- [ ] Abstract maps (optimization)
- [ ] Ranges
- [ ] Tuples (fixed-size constant lists)
- [ ] Structs
- [ ] Enums
- Types
- [X] Basic types for each kind of basic value
- [X] Generalized types: `num`, `any`, `none`
- [ ] `struct` types
- [ ] `enum` types
- [ ] Type aliases
- [ ] Type arguments
- [ ] Compile-time type checking
- [ ] Function returns
- [X] If/Else branches
- [ ] Instruction arguments
- Variables
- [X] Immutable by default
- [X] Block scope
- [X] Statically typed
- [X] Copy-free identifiers are stored in the chunk as string constants
- Functions
- [X] First-class value
- [X] Statically typed arguments and returns
- [X] Pure (no "closure" of local variables, arguments are the only input)
- [ ] Type arguments
- Control Flow
- [X] If/Else
- [ ] Loops
- [ ] `for`
- [ ] `loop`
- [X] `while`
- [ ] Match
## Implementation
Dust is implemented in Rust and is divided into several parts, most importantly the lexer, compiler,
and virtual machine. All of Dust's components are designed with performance in mind and the codebase
uses as few dependencies as possible. The code is tested by integration tests that compile source
code and check the compiled chunk, then run the source and check the output of the virtual machine.
It is important to maintain a high level of quality by writing meaningful tests and preferring to
compile and run programs in an optimal way before adding new features.
### Lexer and Tokens
The lexer emits tokens from the source code. Dust makes extensive use of Rust's zero-copy
capabilities to avoid unnecessary allocations when creating tokens. A token, depending on its type,
may contain a reference to some data from the source code. The data is only copied in the case of an
error. In a successfully executed program, no part of the source code is copied unless it is a
string literal or identifier.
### Compiler
The compiler creates a chunk, which contains all of the data needed by the virtual machine to run a
Dust program. It does so by emitting bytecode instructions, constants and locals while parsing the
tokens, which are generated one at a time by the lexer.
#### Parsing
Dust's compiler uses a custom Pratt parser, a kind of recursive descent parser, to translate a
sequence of tokens into a chunk. Each token is given a precedence and may have a prefix and/or infix
parser. The parsers are just functions that modify the compiler and its output. For example, when
the compiler encounters a boolean token, its prefix parser is the `parse_boolean` function, which
emits a `LoadBoolean` instruction. An integer token's prefix parser is `parse_integer`, which emits
a `LoadConstant` instruction and adds the integer to the constant list. Tokens with infix parsers
include the math operators, which emit `Add`, `Subtract`, `Multiply`, `Divide`, and `Modulo`
instructions.
Functions are compiled into their own chunks, which are stored in the constant list. A function's
arguments are stored in the locals list. The VM must later bind the arguments to runtime values by
assigning each argument a register and associating the register with the local.
#### Optimizing
When generating instructions for a register-based virtual machine, there are opportunities to
optimize the generated code by using fewer instructions or fewer registers. While it is best to
output optimal code in the first place, it is not always possible. Dust's compiler modifies the
instruction list during parsing to apply optimizations before the chunk is completed. There is no
separate optimization pass, and the compiler cannot be run in a mode that disables optimizations.
#### Type Checking
Dust's compiler associates each emitted instruction with a type. This allows the compiler to enforce
compatibility when values are used in expressions. For example, the compiler will not allow a string
to be added to an integer, but it will allow either to be added to another of the same type. Aside
from instruction arguments, the compiler also checks the types of function arguments and the blocks
of `if`/`else` statements.
The compiler always checks types on the fly, so there is no need for a separate type-checking pass.
### Instructions
Dust's virtual machine uses 32-bit instructions, which encode seven pieces of information:
Bit | Description
----- | -----------
0-4 | Operation code
5 | Flag indicating if the B field is a constant
6 | Flag indicating if the C field is a constant
7 | D field (boolean)
8-15 | A field (unsigned 8-bit integer)
16-23 | B field (unsigned 8-bit integer)
24-31 | C field (unsigned 8-bit integer)
#### Operations
The 1.0 version of Dust will have more than the current number of operations but cannot exceed 32
because of the 5 bit format.
##### Stack manipulation
- MOVE: Makes a register's value available in another register by using a pointer. This avoids
copying the value or invalidating the original register.
- CLOSE: Sets a range of registers to the "empty" state.
##### Value loaders
- LOAD_BOOLEAN: Loads a boolean to a register. Booleans known at compile-time are not stored in the
constant list. Instead, they are encoded in the instruction itself.
- LOAD_CONSTANT: Loads a constant from the constant list to a register. The VM avoids copying the
constant by using a pointer with the constant's index.
- LOAD_LIST: Creates a list abstraction from a range of registers and loads it to a register.
- LOAD_MAP: Creates a map abstraction from a range of registers and loads it to a register.
- LOAD_SELF: Creates an abstraction that represents the current function and loads it to a register.
##### Variable operations
- GET_LOCAL: Loads a variable's value to a register by using a pointer to point to the variable's
canonical register (i.e. the register whose index is stored in the locals list).
- SET_LOCAL: Changes a variable's register to a pointer to another register, effectively changing
the variable's value.
##### Arithmetic
Arithmetic instructions use every field except for D. The A field is the destination register, the B
and C fields are the arguments, and the flags indicate whether the arguments are constants.
- ADD: Adds two values and stores the result in a register. Unlike the other arithmetic operations,
the ADD instruction can also be used to concatenate strings and characters.
- SUBTRACT: Subtracts one argument from another and stores the result in a register.
- MULTIPLY: Multiplies two arguments and stores the result in a register.
- DIVIDE: Divides one value by another and stores the result in a register.
- MODULO: Calculates the division remainder of two values and stores the result in a register.
- POWER: Raises one value to the power of another and stores the result in a register.
##### Logic
Logic instructions work differently from arithmetic and comparison instructions, but they are still
essentially binary operations with a left and a right argument. Rather than performing some
calculation and storing a result, the logic instructions perform a check on the left-hand argument
and, based on the result, either skip the right-hand argument or allow it to be executed. A `TEST`
is always followed by a `JUMP`. If the left argument passes the test (a boolean equality check), the
`JUMP` instruction is skipped and the right argument is executed. If the left argument fails the
test, the `JUMP` is not skipped and it jumps past the right argument.
- TEST
- TEST_SET
##### Comparison
- EQUAL
- LESS
- LESS_EQUAL
##### Unary operations
- NEGATE
- NOT
##### Execution
- CALL
- CALL_NATIVE
- JUMP
- RETURN
The A, B, and C
fields are used for usually used as indexes into the constant list or stack, but they can also hold
other information, like the number of arguments for a function call.
### Virtual Machine
The virtual machine is simple and efficient. It uses a stack of registers, which can hold values or
pointers. Pointers can point to values in the constant list or the stack itself.
While the compiler has multiple responsibilities that warrant more complexity, the VM is simple
enough to use a very straightforward design. The VM's `run` function uses a simple `while` loop with
a `match` statement to execute instructions. When it reaches a `Return` instruction, it breaks the
loop and optionally returns a value.
## Previous Implementations
Dust has gone through several iterations, each with its own design choices. It was originally
implemented with a syntax tree generated by an external parser, then a parser generator, and finally
a custom parser. Eventually the language was rewritten to use bytecode instructions and a virtual
machine. The current implementation is by far the most performant and the general design is unlikely
to change.
Dust previously had a more complex type system with type arguments (or "generics") and a simple
model for asynchronous execution of statements. Both of these features were removed to simplify the
language when it was rewritten to use bytecode instructions. Both features are planned to be
reintroduced in the future.
## Inspiration
[Crafting Interpreters] by Bob Nystrom was a great resource for writing the compiler, especially the
Pratt parser. The book is a great introduction to writing interpreters. Had it been discovered
sooner, some early implementations of Dust would have been both simpler in design and more ambitious
in scope.
[The Implementation of Lua 5.0] by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes was a great resource for understanding register-based virtual machines and their instructions.
This paper was recommended by Bob Nystrom in [Crafting Interpreters].
[A No-Frills Introduction to Lua 5.1 VM Instructions] by Kein-Hong Man has a wealth of detailed
information on how Lua uses terse instructions to create dense chunks that execute quickly. This was
essential in the design of Dust's instructions. Dust uses compile-time optimizations that are based
on Lua optimizations covered in this paper.
[A Performance Survey on Stack-based and Register-based Virtual Machines] by Ruijie Fang and Siqi
Liup was helpful for a quick yet efficient primer on getting stack-based and register-based virtual
machines up and running. The included code examples show how to implement both types of VMs in C.
The performance comparison between the two types of VMs is worth reading for anyone who is trying to
choose between the two. Some of the benchmarks described in the paper inspired similar benchmarks
used in this project to compare Dust to other languages.
## License
Dust is licensed under the GNU General Public License v3.0. See the `LICENSE` file for details.
[Crafting Interpreters]: https://craftinginterpreters.com/
[The Implementation of Lua 5.0]: https://www.lua.org/doc/jucs05.pdf
[A No-Frills Introduction to Lua 5.1 VM Instructions]: https://www.mcours.net/cours/pdf/hasclic3/hasssclic818.pdf
[A Performance Survey on Stack-based and Register-based Virtual Machines^3]: https://arxiv.org/abs/1611.00467